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A free-streamline model of the two-dimensional sail 

By J. P. DUGAN 
University of Toronto 

(Received 27 October 1969 and in revised form 12 January 1970) 

The two-dimensional sail is considered in a free-streamline model to complement 
the oft-considered airfoil model which is limited to small angles of attack. The 
shape of the sail, the lift and drag coefficients, and the moment are obtained for 
various angles of attack and states of tension. 

1. Introduction 
The sailboat is an intriguing device long used by man in his livelihood and 

recreation. The sail, as the motive power for the boat, has been the object of 
much interest. Although there have been several attempts by fluid mechanicians 
over the years to model the sail analytically, most efforts to quantitatively 
evaluate its efficiency have been experimental (cf. Shenstone 1968). Probably 
the most interesting experiment, by which to obtain the efficiency of the sail 
set at different trim, is to measure the speed of one’s own boat. Evidently, the 
efficiency of the sail is increased if the boat moves faster. There seems to be little 
doubt that this is the best way to design a sail (Marchaj 1964; Letcher 1965). 
However, to model a sail analytically presents a challenge that, in the end, could 
increase our knowledge of its workings. 

The first model of a sail seems to be that of Cisotti (1932). This is a free- 
streamline model in which the flow separates a t  the edges of the sail, forming an 
infinite quiescent wake. Since Cisotti did not exhibit any results, his model is 
used here to determine the shape and the lift and drag coefficients of an idealized 
sail. This model is essentially different from the more recent aerodynamic models 
chosen by Voelz (1950) and Thwaites (1961). In  these papers, the sail is replaced 
by a linear distribution of vortices just as is done in airfoil theory, with the 
exception of the change in the boundary condition. Voelz (1950) obtained the 
sail shape and the f i s t  eigenvalue of the linear integral equation for the strength 
of the vortex sheet. The solution for values of the parameter that are less than 
this eigenvalue is shown to be the usual concave shape expected of a sail. Some- 
what surprisingly, however, the solution for values of the parameter greater 
than the eigenvalue showed an inflexion of the sail profile. Thwaites (1961), 
apparently unaware of the earlier work, covered some of the same ground and 
he showed the existence of higher eigenvalues, each one determining the onset 
of a higher mode of the sail shape. These papers also exhibit lift coefficients. 
Chambers (1966) confirmed the earlier numerical estimates of the eigenvalues 
by a variational procedure and Nielsen (1963), choosing to formulate the problem 
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in terms of airfoil camber and a differential equation for the aerodynamic loading 
of the sail instead of in an integral equation, obtained equivalent results. Nielsen 
(1963) also performed experiments on a flexible sail in a wind tunnel and, although 
the results shown are sketchy, a comment on the possible importance of the 
porosity of the sail fabric apparently stimulated an analysis of the effects of 
porosity by Barakat (1968). 

The airfoil theory predicts some interesting characteristics of sails. Probably 
the most important is the existence of inflexion points in the profile when the 
tension is not too great. That theory is, however, limited to very small angles of 
attack (ones smaller than those usually found on boats) and it predicts zero drag. 
The model used here eliminates these difficulties, but it does still treat only two- 
dimensional sails, and it does have physical limitations of its own. For example, 
the free-streamline theory in the simple form used here predicts a wake of infinite 
length. One does find a long wake in practice as every sailor knows when he is 
‘covered’, but it does not extend to infinity. Also, as used in practice, the sail 
is seldom fully ‘stalled’, that is, only partial separation occurs. Finally, this 
model still leaves out all effects of viscosity and turbulence. 

This formulation, then, based on Cisotti’s model, uses the conformal mapping 
technique of Levi-Civita (1907) as modified by Villat (191 1) and as discussed by 
Birkhoff & Zarantonello (1957). Thus, the particulars are somewhat different 
from those of Cisotti. The resulting non-linear, singular integral equation has 
been solved for asymptotically small deflexion of the sail for the special case of 
a symmetric sail (Dugan 1966). Here, it is solved asymptotically for small 
deflexion, and solved numerically to obtain the sail and free streamline profiles 
and the drag, lift and moment experienced by the sail. 

2. Formulation 

be formulated in the complex notation, 
The representation of incompressible, two-dimensional potential motion can 

I 2 = X t i Y  = L-l(x+i$), 

w = CI, + iY = U-1L-1($ + i$), 
1 

where U is the uniform fluid velocity at infinity, L is the length of the sail, small- 
lettered variables are dimensional, and capital lettered ones non-dimensional. 
The co-ordinate system and appropriate variables are shown in figure 1. The 
boundary conditions are that the velocity is uniform at infinity, the pressure is 
continuous across the free streamlines, and the pressure difference across the 
sail is balanced by the tension along the sail. The first and second boundary 

(2) 
conditions give 

where Po is the pressure in the quiescent wake. This gives the condition, 

&pU21[12+P = &pU2+Po = const., 

ILJ2 = 1 on AJ, and BJz, (3) 
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( P  - Po) dl cos (dp) = T sin (dp), 
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the free streamlines. A force balance on a differential element of the sail as shown 
in figure 2 gives 

where dl is the differential arc length and dp is the differential angle of deflexion 
of the element. The tension T is assumed to be constant and the sail to be in- 
extensible. Since dp is small, (2) and (4) give 

(4) 

as the boundary condition on the sail. J. 

! A 1 

J ,  

FIGURE 1. The physical z-plane. 

X 

FIGURE 2. Force balance on an element of the sail. 
28-2 
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If one could directly obtain the mapping of the W-plane into the Z-plane the 
problem would be simple indeed. However, this is not practically possible so it 
is convenient to utilize the technique of Levi-Civita (1907) as modified by Villat 
(1911). This method consists of mapping the W-plane into an auxiliary t-plane 
and finding an analytic function a, called the Levi-Civita function, that maps the 
t-plane into the [-plane where it is possible to apply the boundary conditions. 
The t-plane contains the flow fieldin the interior ofa semi-circle, the circumference 

W-plane 

t-plane 

FIGURE 3. Auxiliary complex planes. 

of which corresponds to the sail and the diameter of which corresponds to the 
free streamlines. A functional relation involving the Levi-Civita function is 
assumed between the c- and t-planes. This functional relation, once Q is computed, 
completes the connexion between the W -  and fS-planes. 

The W-plane is mapped into the t-plane by the transformation, 

W = M[cos fTo - &(t + t-l)]Z, (6) 

as shown in figure 3. M is an unknown constant introduced in the normalization 
of the semi-circle and reflects the fact that the separation points A and B cannot 
be explicitly located in the W-plane. An integral relation for M will be derived 
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later. The functional relation between the t- and <-planes is assumed to be of 
the form, 

The Levi-Civita function Q is a complex quantity in general, and it may be 

(8) 
written Q = 6+i7. 

This particular form for the relation between the <- and t-planes is chosen because 
it immediately allows SZ to be single-valued and continuous in t and it allows 
automatic satisfaction of one of the boundary conditions. The choice is really 
fixed by the solution of the corresponding flat plate problem. 

Thus, since the free streamlines correspond to the interval ( -  1 , l )  of the real 
line in the t-plane, the requirement, 

t = a ,  - l < a < l ,  

gives (9) 

With (3), this gives T = O  on - l < R e t < 1 .  (10) 

Therefore, requiring s1 to be real on the real line will satisfy this boundary con- 
dition automatically. Also, the sail corresponds to 

t = eta (0 6 a < T), 

so that 
-ao-6+n on O < c r < a o ,  

-a,,-6 on a,< a < n .  
argc = 

Due to the form of (7), then, the fluid velocity has a jump in its argument of n 
radians at  the stagnation point go, as it should from physical reasoning. This allows 
52 to be single-valued and continuous everywhere in the interior of the t-plane. 

It remains to use these expressions to obtain s1. A simple construction (Birk- 
hoff & Zarantonello 1957, p. 134, or Dugan 1966, p. 11) shows that 

ao+e = p, 
or d6 = dp, 
so that (5) can be written as 

Geometric arguments give dl = LldZI, 

dl 
da 

and this, with (l), yields - = 

so that on t = eiu, and with (6) and (7), 

ae 
- = 2MK sin a{sin a sin a. cosh T ( C )  
dcT 

-(l-cosacosao)sinh~(a)} (0 < a < n), (13) 
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where 

Recapitulating, (13) is a relation between 19 and 7 ,  the real and imaginary parts 
of the Levi-Civita function. It represents the boundary condition on the sail. 

The Levi-Civita function may be extended to an analytic function in the unit 
circle I t /  < 1,  so that the series m 

Q(t)  = c ant’& (14) 
i a  = 0 

exists. The an’s must all be real constants by (1  0 )  (the boundary condition on the 
free streamlines), so that, with (S), 

on 1 = ein (0 6 a < n). (15) I m 

O(a) = Ca,cosna, 
n = O  

CC 

7(a) = C a, sin na, 
n = O  

Since both expressions contain the same constants, this constitutes a second 
relation between I9 and r. This relationship may be written in the more convenient 
form 

2 sinjasinjd 1 sin+(g+a‘) 
nj=1 j 7~ ,sing(a-a’) ‘ 

where D(a,a’) = - - C = - -In1 

(cf. Birkhoff & Zarantonello 1957, p. 136, or Dugan 1966, appendix IB). The 
substitution of ( 13) into the integral expression (1 6) gives 

2 j:lnlsin:(n+a’)/ 
77 sin &( a - a’) 7(a) = - - M K  sin a’(sin a’ sin a. coshr(a’) 

-((l-cosrr‘cosao)sinhr(rr‘)}da’ (0 6 a < n). (17 )  

This is a non-linear, singular integral equation for the imaginary part of the 
Levi-Civita function. Once r(a) is determined, Q(t) can be constructed by 
obtaining the coefficients of the power series (14). However, there still remains 
in the integral equation the unknown constant M that was introduced in the 
conformal mapping. 

This constant can be determined from the side condition (that has not been 
used up to now) that the total length of the sail is L. Using the geometric argument 
before (13), 

and, substituting from above, 

dZ = 2ML sin a[ 1 - cos (rr + go)]  e-T(v)da, 

so that, upon integration, the side condition on M is 

This relation, along with the integral equation (1 7) suffices to determine 7( IT). 
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The sail and free streamline profiles are obtained through (1) 
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so that, substituting again from above, 

1 - t eiuo 
t - &a 

dZ = - -~ ei(U0-d &W) Jf[cos 0 - -( ; t+t-l)][l-t-2]dt. (19) 

The parametric equations of the sail profile are obtained by substituting t = eiu 
into this expression and integrating from the stagnation point C to the ends of 
the sail, that is, from t = eiqo to t = 1 or - 1. The equations are 

h 

2 = 2 M  sin a’[ 1 - cos (a’ + g 0 )] e i ( ~ o + ~ ( ~ O )  e-T(u’) dq‘ ,  (20) 1: 
where 2 = d +ir? denotes the co-ordinates of the sail profile. The equations of 
the free streamline profiles are obtained by substituting t = a where a is real 
into (19), and integrating from the ends of the sail t o  infinity, that is, from t = 1 
or t = - 1 to t = 0. In this case, the equations are 

h z- z, = : ~ j ~  a‘-3(1 -a’2) [2a’- (1 +a’2)  cos Go 
il 

+ i( 1 - a ’ 2 )  sin g,]ei(~o+Na’))da’ , (21) 
A h  

yhere Z - ZTA= (x  - 2,) + i( r? - fT) denotes the co-ordinates of the profiles and 
2, = 8, + i Y ,  denotes the co-ordinates of the ends of the sail. 

Just as for the profiles, the forces acting on the sail can be obtained by quad- 
ratures. Thus, a simple derivation gives 

dF = -i(P-P,)dZ, 

so that 

or, F = - 2 i M p U 2 L  {sinosinaocosh7(u) 

- (1 - cos u cos ao) sinh T(a)}eico eie(c) sin a da. (22)  
1; 

It is easily shown that Fv = 0 for a. = $71 and that with 

F = Fz+iFv = +pU2L(CD+iC,), 

27r sin2 uo 
4 + 71 sin a, 

27r sin a. cos a. 
4 + 71 sin uo 

c, = ______ , c,=-- 

in the limit of K --f 0 of (22) .  These are the results for the flat plate. The drag and 
lift could have been obtained through the elegant formulae of Levi-Civita (see 
Gurevich 1966, p. 98) instead of through the integral (22 ) .  Similarly, the moment 
is given by 

or M = -pU2L2M [ l -cos(a-ao)]eT(~~sina 

M = Re(-~pUz~z~2dz} ,  (23) 

x {~(o)cos(oo+8(a))  + r?(o)sin(oo+8(o)))da, (24) 
1: 

where 8 ( ~ )  and P(a) are given by (20). 
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3. Solution of equations and results 
The determination of the sail profile and the forces and moment acting on the 

sail rests upon the solution of (17) for ~(0). The equation is solved below by an 
asymptotic technique for small deflexion of the sail and by a numerical technique 
for arbitrary deflexions. 

The limit K --f 0 (this may be interpreted as T + 00) reduces the problem to the 
flat-plate problem considered by Rayleigh (1876). Equation (17) gives 7(a) = 0 
so, by expressions (15), B ( a )  = 0. Evidently, then, 7(a) and B(v) are small for 
small deflexions of the sail ( K  4 1) .  I n  fact, the form of (17)  implies that M K  is 
an appropriate perturbation parameter so that it is natural to  assume a solution 
of the form, 

for MK < 1.  Actually, (1  7)  also implies that  7(0) 6 0, so (18) yields 

(25) 7(a) = 70(a) + MKT1(V) + (&!fK)27,(a) + . . . , 

M < (4+~rs ina , ) -~  < &, (26) 

verifying that IMK < 1 if K 4 1. Substituting the expansion (25) into (17), ex- 
panding the hyperbolic functions, and equating coefficients of equal powers in 
M K  gives the sequence of equations, 

7 0 ( 4  = 0, 

~ ~ ( a )  = - 4n-I sin go D(a, a’) sin a‘ da‘, SG 
T 2 ( V )  = 4n-1 D ( v ,  a’) (1 - cos a. cos a’) T1(Cr’) da’, 1: 

I 73(a) = - 4n-1 / , rD(a,  ol) {2-172,(a’) sin a. sin a’- (1 - cos aocos a’) 72(a’))da’, 

(27) 

where D(a,  a’) is the former of the two kernel functions ( I  6). Evaluation of these 
integrals gives 

sin(2n-1)a 
T ~ (  a) = 1677-l sin a. C 

9 L = l  (27%- 1)2[(2n- l)‘-4]’ 
m 

T ~ ( o - )  = -256n-2sinao C ((2j- 1) [(2j- 1)2-4]}-1 
j , , n = l  

cos go cos 2na - sin(2n--)a  { [ ( 2n - 1 )2 - 4 ( j - 1 )2] [ ( 2n - 1 )2 - 4j2] [ 4n2 - ( 2 j  - 3) ‘1 [ 4n2 - ( 2 j  + 1 ) ‘1 

(28) 

The next correction r3(a) has been computed, but it is quite messy and is not of 
sufficient interest to  include here. The corresponding values of the constant M 
can be obtained by substituting the expansion (25) and (28) into (18), so that 

+ O(K’)]. (29) 
16 n + 2 sin a. 

(4 + 7~ sin a o ) 2  
M = (4+nsincr0)-l 
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The resulting three-term approximate expression for ~ ( c r )  appears to converge 
for values of K up to unity; the two-term expansion for values up to about one- 
half. It is of more than passing interest to note that the first two terms above are 
identical to the first two terms of the Neumann series solution of the linearized 
form of (1 7 ) .  The non-linearity of (1  7) and, therefore, the non-linearity of the 
boundary condition on the sail becomes important when K 5 Q since that is 
when the third and higher order terms in the expansion ( 2 5 )  become important. 
The Neumann series solution mentioned above converges strictly for M K  < 3--9, 
the first eigenvalue of the homogeneous linearized equation (see Courant & 
Hilbert 1953, p. 153; Tricomi 1957, p. 50). In  the limit IT, -+ 0 and K < 1,  (29) 
gives M = 4-l, so that the expansion converges for K 2 2.310. Considering that 
this is only an approximate estimate of the limit of K in the linearized case of a 
completely different t,heory, it is remarkable that this value of K is so close to 
Voelz's (1950) first eigenvalue, 2.299 in the present notation, which was corrected 
by Thwaites (1961) and Chambers (1966) to 2.316. This limiting value of K has 
no bearing on the non-linear problem. 

In the approximation above, the drag and lift coefficients (22) are given by 

(sincr,--icosa,) 
2n- sin cr, 
4 + n- sin cr,, 

C =  

T + 2 sincr, 
4 + Tsin cr, 

The integral equation ( 17) with the side condition (1 8) also has been solved 
by successive approximations whereby, assuming an initial M, and T,(v), cor- 
rections are found successively by the formulae 

and ~,+~(cr) = 2M,,+, K D(cr, cr') sin cr' 
/On 

x (sincr'sina,coshT,(a')-(l - c o ~ c r ' ~ ~ ~ c r , ) s i n h ~ , , ( ~ ' ) ) d c r ' ,  (31) 

where D(a,a ' )  is the second kernel function (16). The integrals are evaluated 
numerically by Simpson's rule, proper care being taken with the singularity. 
The details of this and the calculation of the remaining integrals do not seem 
worth repeating here, they are straight-forward and, in any case, they may be 
found in Dugan (1966). We note only that the solution of (31) above converges 
nicely ( \M,+l- M,( < 0.0001, max \T,+~(cT) -T,(cT)~ < 0.0001) for cr, 5 5', K 2 7.  
Sample solutions for the sail profile are shown in figure 4 for several values of K 
and the angle of attack and, the lift and drag coefficients are plotted in figures 5 
and 6. Figure 7 is a plot of the liftldrag coefficient and figure 8 shows the moment 
acting on the sail. It should be noted that the parameter cr, is the angle of attagk 
of the 'equivalent' flat-plate problem. Since the positions of the endpoints 2, 
of the sail vary with K as well as with go, the real angle of attack (angle between 
a line joining the endpoints and the x-axis) can only be determined from the sail 
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profile. This is of minor importance but it does cause difficulty in an attempt to 
compare the resulting sail profiles with previously derived ones. In the figures, 
the angle of attack is the real angle of attack as defined above, not the angle of 
attack of the 'equivalent ' flat-plate problem. 

FIGURE 4. Sail profiles. In each case cr,, = 7.5'. Act,ual a,ngle of attack = 8.5" for K = 1, 
11" for K = 2, 16.5" for K = 3.5. 
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FIGURE 5. Plot of C,  verms angle of attack for various K. 0, K = 0.1; A, K = 3.5; 
0, K = 2; V,  K = 5. 
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The lift and drag coefficients as defined in $ 2  are proportional to those usually 
defined in airfoil theory except that the area is not the cross-sectional area but is 
the length L of the sail. The calculated drag coefficients are relatively independent 
of the parameter K ,  but the maximum lift coefficient increases markedly with 
increasing K ,  the maximum occurring a t  smaller angles of attack for larger 
values of K.  This theory is invalid for zero angle of attack and this evidently 

0.8 

0.7 

0.6 

0.5 

0.4 
c, 

0.3 

0.2 

0.1 

0 I I I I I 1 I I \, 
10 20 30 40 50 60 70 80 90 

Angle of attack, degrees 

FIGURE 6. Plot of C L  ver8us angle of attack for various K .  0, K = 0.1; 0, K = 0 .5 ;  
A, K = 1 ;  a, K = 2 ;  ., K = 3.5;  A, K = 5 .  

appears in the difficulty in obtaining convergent solutions of the integral equa- 
tions in this neighbourhood. However, the iterative scheme does converge for 
small angles of attack if K is small or moderate. The resulting lift coefficients 
which are plotted in figure 6 do not agree with those predicted by the airfoil 
analysis. The lift coefficient appears to increase linearly with the angle of attack 
for small angles but the limiting value is one-quarter the value predicted by 
Voelz (1950) and others. The disparity is embedded in the assumption that there 
is not separation in the airfoil theory while there is separation in the present case. 
However, since the experimental values of the lift coefficient obtained by Nielsen 
(1963) were one-half to one-third of those predicted by the airfoil theory, the 
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values predicted here in the limit of go + 0 appear to be as valid as the previous 
ones. Figure 8 shows that the moment decreases with increasing values 
of K .  

As mentioned above, this model breaks down when the angle of attack is too 
small. The tension in the sail has to be increased ( K  decreased), the smaller the 

1.2 

1 .o 

0.8 

b 

2 0.6 

X 
q 

c.? 

0.4 

0.2 

0 
0 10 30 50 70 90 

Angle of attack, degrees 

FIGURE 7. Plot of CL/C,  times angle of attack versus angle of attack. 

angle of attack, in order t o  obtain a convergent solution of (17). This is as might 
be expected physically, presumably foretelling the onset of a higher mode as 
predicted by the airfoil model. 

In conclusion, then, the free-streamline model can be used to describe the 
aerodynamics of a two-dimensional sail. This model complements rather than 
supercedes the airfoil model because of different ranges of validity in the angle of 
attack. In the small range where each can predict solutions, this model should 
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be a better representation of reality because the stream would begin to separate 
from the back of the sail. 
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FIGURE 8. Plot of moment times angle of attack versus angle of attack. The 
moment = M . p U a L 2 .  0, K = 0.1; A, K = 2; 0, K = 1 ;  v , K  = 3.5. 
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On the oscillations of harbours of arbitrary shape 
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A theory is developed for calculating oscillations of harbours of constant depth 
and arbitrary shape. This theory is based on the solution of a singular integral 
equation. Numerical results have been calculated for rectangular harbours so as 
to check the accuracy of the method. Examples for wave ampli6cation factor 
and velocity field for both rectangular and actual complex-shaped harbours are 
given. 

1. Introduction 
The occurrence of resonance in harbours is fundamentally due to the fact that 

waves arriving at  a widening or narrowing (or at a depth increase or decrease) are 
partially reflected. Consider, for example, a rectangular harbour open to the sea. 
Waves arriving within the harbour are reflected seaward by the rear boundary; 
these outgoing waves, upon reaching the harbour entrance again, are partially 
reflected by the sudden widening, with the net result that part of the wave energy 
which got in does not get back out. This trapping of energy by the harbour leads 
to resonance if the phases of the various incident and reflected waves happen to 
be such that reinforcement occurs. In  this case, the amplitude of oscillation may 
grow, within the harbour, to values far greater than those incident. At some 
stage of growth, however, energy dissipation and radiation equals energy 
trapping and the oscillation amplitude reaches its maximum. The dissipation is 
of three main forms: wave breaking within the harbour when the oscillation 
exceeds the breaking limit, frictional effects at  the bottom, and wave absorption 
on the bounding beaches. However, radiation seaward is generally more 
important than all of these. 

The problems of developing a practical calculation procedure applicable to 
these processes, already difficult, are compounded by the facts that harbours are 
usually of complex shape and that incident waves are never periodic. Irregu- 
larity of shape causes complicated reflexions of the waves within the harbour so 
that even for periodic input the agitation may appear highly irregular. The 
response to random sea or sweIl or to a dispersive wave train generated by a 
localized disturbance is still more difficult to anaIyze. Furthermore, oscillations 
may be induced by other mechanisms such as fluctuations in atmospheric condi- 
tions, currents moving past the entrance which generate a series of alternating 



448 L-8. Hwang and E. 0. Tuck 

vortices, and even ship transit in and out of the harbour. It is no wonder, then, 
that  taken in its entirety the problem of harbour resonance is intimidating. 

Yet, some form of solution must be found since the harbour resonance problem 
is of very great practical importance in coastal engineering. This is particularly 
so in connexion with ship mooring problems. It is well known that harbour 
oscillations of only a few inches may excite large motions in ship-mooring 
systems causing mooring lines to  break, and ships t o  collide with adjacent 
structures. To minimize such events is the goal of harbour and breakwater 
design, and for that  purpose one must be able to determine harbour response 
characteristics. 

Analytical studies in this area are, for the most part, quite recent. McNown 
(1952) determined the resonant frequency of a circular harbour with a small 
opening under the assumption that the entrance remains as a node of a standing 
wave; a similar approach was applied by Kravtchenko & McNown (1955) to the 
rectangular harbour. Miles & Munk (1961) considered harbours of arbitzrary 
shape and formulated an integral equation describing the agitation within the 
harbour by matching conditions inside and outside the harbour at the entrance. 
But they imposed the restrictions of narrow openings, and slim and rectangular 
harbours, in order to obtain analytical expressions for the resonant conditions 
and maximum amplification. Ippen & Goda (1963) applied Fourier transforma- 
tion methods and obtained the solution of the rectangular harbour by matching 
the wave amplitude and velocity approximately a t  the entrance. The results 
were compared with a series of experiments. For long harbours, the agreement 
between theory and experiment was good except, of course, a t  the resonance 
point where viscous dissipation is important and the experiments become diE- 
cult. Biesel & Le MBhautB (1955, 1956) and Le MBhaut6 (1960, 1961) presented 
an interesting approach in the solution of a rectangular harbour under various 
types of entrance conditions through the use of the theory of complex numbers. 
Most recently, Leendertse (1967) has developed a numerical procedure t o  
determine the response of basins to long waves, elevation a t  open boundaries 
being prescribed. 

All of the foregoing studies suffer to some degree from various deficiencies; 
either they are applicable only to  idealized shapes or matching conditions are 
required a t  the harbour entrance. The present study requires no prescribed 
entrance conditions, and permits solution for completely arbitrary shape. 
Furthermore, the present method is highly economical for practical use since the 
numerical scheme involved does not require long computing time (computation 
time for both the results of figures 4 and 9 is less than one minute on the CDC 
6600). 

2. Theoretical formulation 

exists a velocity potential @(q y, z ;  t )  which satisfies the Laplace equation 
Assuming that the fluid is inviscid, incompressible, and irrotational, there 

VZ@ = 0 (2.1) 
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throughout the fluid contained within the boundary surfaces as shown in figure 1. 
If the wave is assumed to  be of small amplitude, the velocity term in the Bernoulli 
equation may be neglected. Thus, the governing dynamic boundary condition on 
the free surface becomes 

where [ is the wave elevation and g is gravitational acceleration. 

X 

FIGURE 1. A schematic drawing of the harbour. 

The linearized kinematic condition a t  the free surface, which follows from the 
fact that  surface water particles stay on the surface, is expressed in the form 

aqat = a q a z  at z = 0. (2.3) 

a@/an = 0 (2.4) 

The condition on the fixed boundary surface is that the velocity normal to the 
surface equals zero; that is 

on the boundary S. 

is simply 

Finally, the condition a t  infinity requires that 

Since we are dealing with uniform water depth h, the condition a t  the bottom 

a q a z  = o a t  z = - h. (2.5) 

0 = (Do+@,, (2.6) 

(2.7) 

and @, is an outgoing wave. (2.8) 

= cos (kx cos p) exp [ - i ( o t  - ky sinp)], 

The above equations complete the formulation of the problem of oscillation in 
a constant depth harbour of arbitrary shape. 

Since the water depth is uniform, we may assume that the velocity potential 
is a product of functions ofx and y, z ,  and t ,  such as 

@(x, y, x ;  t )  = ( l / w i )  $(z, y) Z(z) e-i*Jt, (2.9) 

where w is the angular frequency. 
29 F L M  42 
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Substituting the above expression into the Laplace equation, separating the 
functions of x and y ,  and z and equating them to a constant, say k2, we have 

and 

(2.10) 

(2.11) 

The solution of (2.11) together with the bottom boundary condition 

aZ/& = 0 at z = - h  (2.12) 

and the kinematic surface boundary condition 

(2.13) 

can be found in some text-books (e.g. Stoker 1963), and is simply 

Z(Z) = - Ag Gosh k(z + h)/cosh kh, (2.14) 

where A is the amplitude of a standing wave at  infinity. The constant, k ,  is a 
wave-number, and is related to the angular frequency o and the water depth h 
through the kinematic boundary condition at the free surface. This relationship 
can be simply obtained by substituting (2.9), (2.13) and (2.14) into (2.3). One 

(2.15) 
finds 

o2 = gk tanh kh. 

The problem now is to obtain the solution of (2.10) with the boundary condition 

a#/an = 0 on the solid boundary S ,  (2.16) 

which is obtained from the substitution of (2.9) into (2.6), and with the prescribed 
condition at infinity. The condition at infinity can be determined as if the 
harbour were absent. This is due to the fact that the influence of radiated'waves 
from the harbour tends to zero at infinity. Thus, for a straight-crested standing 
wave at  infinity with the crest at  an angle p to the shoreline, we have 

#o = cos(kxcos/3)exp[-ikysin/3] (0  < /3 < T ) ,  (2.17) 

which corresponds to the wave form 

1: = Acos(kzcos~)exp[-i(wt-kysin/3)] (2.18) 

a t  infinity. If the wave front propagates directly toward the shore, /3 is equal to 

(2.19) 
zero, so that $o = cos kx.  

3. Derivation of the integral equation 
For a standing wave of unit amplitude a t  infinity, the solution of Weber's 

equation (2.10), together with the boundary conditions, (2.16) and (2.17), can be 
found through the introduction of a source function Q(E,  7) along the boundary S ,  
where 5 and 7 refer to co-ordinates on the boundary. 
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Thus, the value of #(x, y) at any point (2, y), is equal to the sum of two parts; 
one is the influence from infinity #o(x, y) and the other is the contribution of the 
source distribution, that is, the scattered wave caused by the presence of the 
boundary. The latter will be given by 

Is dXQ(6,  7) (4x7 Y; 5,7), (3.1) 

where G(z, y; 6 , ~ )  is the Green’s function and Q(6,r) is the unknown source 
distribution, which can be determined from the boundary conditions. 

The Green’s function has to be chosen so that it is the solution of Weber’s 
equation, (2.10), satisfies the radiation condition at  infinity, and has a singu- 
larity at  the source point. Thus we choose the Green’s function to be a Hankel 
function of the first kind rather than of the second kind to guarantee that the 
disturbance, due to the harbour, at  infinity takes the form of an outgoing wave 
rather than an incoming wave. 

(3.2) 
where (3.3) 

so that the value of $(x, y) at any point (2, y) is 

Gfx, y; ‘577) = - WP(W, 
R = H. - El2  + (y - 7)”4 

The problem now is to determine the strength of the source distribution &(El 7). 
This can be accomplished by applying the boundary condition (2.16)’ which gives 

(3.5) 

Since the limit is singular inside the integral, it  has to be treated with care. We 
evaluate the integral in (3.5) by use of contour integration. The path of the 
integral is along the boundary except around the point ( F ,  7’) where the contour 
is deformed into a small circle with a radius E .  Since the contribution around a 
large semicircle is zero, the integral in (3.5) may be evaluated as follows: 

a z,;Li& & / s d s Q ( 5 ,  7) G(x,  Y; f;’ 7) 

= s, dX&(E,  7) GJC’ 7’; 5’7) + lim Ie dXQ(E,  7) G?&, Y; 6 7  7), (3.6) 
z, v-r. 7, 

where the sign 

Hankel function can be approximated by 

refers to a principal value in the sense of Cauchy. Since the 
ss 

(3 .7)  
1 

2n 

the second integral of the right-hand side of (3.6) may be integrated analytically. 
We have 

- &iBb’)(kB) -+-In (kR) (R-t  0) 

29-2 
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Thus the integral equation becomes 

L-S. Hwang and E. 0. Tuck 

a 
~ Q ( E ' ,  7') +j ~ S Q ( [ ,  7) Gn(kR) = - $ o ( t ' ,  T ' ) ,  (3.9) 

S 

where Gn(kR) = - @ a(Hf)(kR))/an. (3.10) 

The above equation cannot be solved analytically. A numerical method for 
evaluating the source distribution &([,y) is derived in the following section. 

4. Numerical solution 
Let us divide the boundary S into many segments with length ASi along the 

boundary, where j = 1,2,3,  . . . , N .  The lengths of these segments need not be 
uniform; however, they must be small enough so that within each segment, the 
source strength Q(6, 7) does not vary too much. Furthermore, let the midpoint of 
AS, be (ti, qi) and evaluate the integral at  this midpoint of each segment. 
Within each segment the source strength does not vary much, so that we take 
Q(f ; ,  7) to be constant and equal to Q5 within ASj. Then (3.9) becomes 

for simplicity, we may write the above equation in the following form 

where 

J 
(4.3) 

and aij is the Kronecker delta. 

the constants Bij are known. 

and the regular part: 

Equation (4.2) is an algebraic equation which can be solved easily provided 

To evaluate B,, let us split G(kR) = - @Hi') into two parts; one singular part 

G(kR) = (1/27l) log R + M ( k R ) .  (4.4) 

Substituting (4.4) into (4.2), we have 

The first integral on the right-hand side of the equation can be calculated 
analytically and is 

where Asii is the angle subtended at (ti, qa) by the segment of S between (Xi, 5) 
and (-q+l, 5+1). 
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Now we fix an index i [that is, choose a point (ti, qi)] and then run over the 
whole set of j = 1,2 ,3 ,  . . ., N and evaluate the angle AOij as follows: 

For i +j (4.7) 

For i =j A0ij = 0. (4.8) 

The last integral in (4.5) is not singular, thus the bar on the integral can be 
left out. It can be approximated directly to be 

P 

J dSaMpn = ASjaM/an 
ASj 

And ASj aM/an can be evaluated as follows : 

ASj  M, = A? M x  - AXj My 

(4.9) 

(4.10) 

where AXj = Xj+l-Xj, A$ = q+l-Y,. (4.11) 

The value of bi in (4.2) can be obtained in a similar way, i.e. 

a # O  AY a @ O  AX 
ax [(AX)2+(AY)2]j+F [(AX)2+(AY)2]) 

=-  (4.12) 

Once the source strength Q has been calculated, the value of $(x,y) can be 
evaluated as follows: 

a 

where A . = -  J logRdS 
2n ASj 

3 

log z dz . eta 

(4.13) 

= Re - e-ia [x2 log z2 - z2 - z1 log x1 + . 
[in 41 

The symbols zl, z2 and a are as indicated in figure 2, and are related to the original 
system as follows (zl and x2 are complex numbers) : 

and 

e-aa = 

ASj = 

z2 = 

x1 = 

(4.14) 
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Once the value of $(x,y) is known, the velocity potential can be calculated 
from (2.9). 

where 4(x, y) is the value obtained from (4.13). 

(1111111111111111111111 

(4.15) 

FIGURE 2. Co-ordinates used to evaluate the integral 

The velocity components a t  any location (2, y, z) can be calculated as 

cosh k(z + h) ax ] coshkh ’ (4.16) 

(4.17) 
cosh k(z  + h) 

cos wt - -? sin wt ” ’ ] - 

coshkh ’ 
2 , = - - = - -  

aY 

where the subscripts i and r refer to the imaginary and real parts of the complex 
values, respectively. 

The amplification factor a t  any point (x, y) is equal to  the ratio of maximum 
wave height obtained at  point (x, y) to  the wave height a t  infinity. The maximum 
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wave amplitude at infinity is A .  However, the maximum wave amplitude at 

Thus the amplification factor at  any point (x, y) is simply 

R = I$ivw)I. (4.18) 

The actual choice of number and distribution of segments around the harbour 
is necessarily largely intuitive. The results presented in this paper were computed 
with about 60 segments, distributed fairly evenly around the harbour and 
extending to about two wavelengths along the straight outside edges. Essentially 
the same results (to an accuracy of better than one per cent inside the harbour) 
were obtained using 40 segments, either by truncating closer to the harbour 
entrance (say at one wavelength distance) or by reducing the overall density 
of segments. Generally speaking, a density of eight segments per wavelength was 
found to be satisfactory, with more points where the shoreline changes rapidly 
or at  points of special interest. 

5. Results and discussion 
To check the accuracy of the numerical results obtained by the present theory, 

a rectangular harbour of dimension 12-25 x 2.38 inches was chosen first for 
numerical calculation. This particular harbour geometry has been studied both 
analytically and experimentally by Ippen & Goda (1  963); therefore, a comparison 
of their results with the results obtained by the present theory can be made. 
Furthermore, this is a relatively long harbour, so that Ippen & Goda’s approxi- 
mations should be acceptable, and our results should agree with theirs. 

Figure 3 shows the frequency response of the rectangular harbour. The experi- 
mental results are indicated by the small circles, while the theoretical results 
obtained by Ippen & Goda are the solid curve. The dotted line was calculated by 
the present theory. All results were calculated and measured at  location A as 
shown on the figure. Both theoretical curves are in agreement with the experi- 
mental data except around the fundamental mode. 

The scattering of the experimental amplification factors, around the funda- 
mental mode of resonance, has been indicated by Ippen & Goda to be due to 
inefficiency of the wave energy dissipators for incident waves of very low steep- 
ness. For low wave steepness, the transmission coefficient of wave filters increases, 
and their effectiveness for dissipation becomes small. Thus, the incident waves 
generated by the wave paddle were interfered with by the waves radiated from 
the wall. 

The experimental results are lower than theory close to the fundamental 
periods. This is probably due to energy dissipation generated by eddies around 
the entrance and friction along the side wall and bottom, which has not been 
considered in either theory. 

As shown in figure 3, in the immediate neighbourhood of the fundamental 
period, the results obtained by the present theory are slightly larger than those 
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reported by Ippen & Goda. These differences are probably due to the result of 
approximation used by Ippen & Goda. 

1 1  I I I I I I I I I I 

I 
! I  

Harbour 

I k 2 . 3 8 i n .  

12.25 in. 
A 

kl 

FIGURE 3. A cornparison of theoretical and experimental results for frequency 
response of a fully open harbour. 

Typical amplification fields of wave height for the rectangular harbour were 
calculated by use of (4.18). The results of these calculations are plotted in 
figures 4, 5 and 6. The units indicated on the figures represent the scale of the 
wave height relative to the incoming wave height. The results plotted in figures 4 
and 5 are for kl equal to 1.3 and 4. They are located near the fundamental and 
the first harmonic, respectively. Thus the maximum wave height inside the 
harbour is larger than the wave height outside the harbour. Furthermore, it is 
interesting to point out that the waves outside the harbour entrance do not 
decrease uniformly as the distance from the harbour increases. Instead, they 
exhibit a modulation phenomenon which results from the superposition of the 
radiated waves and the incident waves. The results plotted in figures 4 and 6 
have the same wave-number, but a different incident angle. It is clear that the 
amplification factor in figure 6 is considerably less than that in figure 4. This is 
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expected because the effective wave-number decreases when the incident wave is 
at an angle, and the effective frequency of excitation is further away from the 
fundamental period of oscillation. 

1-10 I 

'4 
-1.10 ' I 

I I I I I I I I I I 

-1.10 -0.90 -0.70 -0.50 -0.30 -0.10 0.10 0.30 0.50 0.70 0.90 

4 1  

FIGURE 4. Amplification factor field of the wave height at 
kt = 1.3, p = 0". ~ 15 units. 

10 

Figures 7 and 8 show the amplification factor of the wave height for a bay 
with a complex shape. I n  the case where the wave-number is small (long waves), 
the water level inside the entire harbour oscillates almost uniformly; thus the 
amplification factor is more or less uniform inside the harbour as shown in figure 7. 

In contrast, in figure 8, the incident wavelength L is relatively short in com- 
parison to harbour length I (L z 1.51). The oscillations inside the harbour become 
rather complicated. Each basin inside the harbour may develop its own mode of 
oscillation, and a t  the same time may also affect the oscillation of a neighbouring 
basin. Such mutual interaction may be referred to as a 'coupling oscillation'. 
Thus, in determining oscillations of a harbour with multiple basins, one cannot 
treat each basin separately without considering these interaction phenomena. 
As can be seen in figure 7, there is hardly any nodal line a t  the entrance of the 
bay, while in figure 8, one may identify a nodal line near the entrance. The 
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presence and location of such a nodal line is not only a function of harbour 
geometry but also depends on the frequency of the incoming wave. A solution 
with an imposed condition at the entrance is, therefore, not the solution of the 
actual problem. Such a condition has often been assumed (McNown 

1.10 

0.90 

0.70 

0.50 

0.30 

0.10 

.u . 
a 

-0.10 

- 0.30 

-0.50 

- 0.70 

- 0.90 

- 1.10 

1952; 

j 
'10 -0.90 -0.70 -0.50 -0.30 -0.10 0.10 0.30 0.50 0.70 0.90 1.10 

4 1  

FIGURE 5. Amplification factor field of the wave height at 
kl = 4, /I = 0". ___- 6 units. 

Wilson, Hendrickson & Kilmer 1965; Leendertse 1967; Loomis 1966). In parti- 
cular, the use of the assumption of a nodal line at  the entrance may introduce a 
large degree of inaccuracy, and may sometimes lead to wrong conclusions. With 
a complicated open harbour, it is, in any case, quite arbitrary what we might call 
the 'entrance'. 

The velocity at any point can be calculated from (4.16) and (4.17). At the free 
surface, the velocity can be obtained simply by letting z = 0 so that 
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FIGURE 6. Amplification factor field of the wave height a t  
kl = 4, p = 45". - 6 units. 
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FIGURE 7. Amplification factor field of the wave height in an 
arbitrarily shaped bay at  kl = 1.3, p = 0'. -__ 12 units. 
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from the above equations, it is clear that at  a given point the magnitude and the 
direction of the velocity varies from time to time and the period of mch variation 
equals the period of the incoming waves. 

Figures 9 and 10 show the velocity field of the rectangular harbour corre- 
sponding to the phase wt = in with kl = 1.3 and 4. The small line segments on 

1.10 I 1 

-1.10 I I I I I I I 1 I I I I I 
-1.10 -0.90 -0.70 -0.50 -0.30 -0.10 0.10 0.30 0.50 0.70 0.90 1-10 

4 
FIG~JRE 10. Velocity field in a rectangular harbour at kl = 4, p = 0'. 

16 units.  

the figures indicate the magnitude and the direction of the velocity. The small 
black dots at the ends of the line segments indicate the locations where the 
velocity was calculated. The line pointing away from the black dot indicates the 
direction of the velocity. Figure 9 indicates that the velocity vectors around the 
harbour, a t  that instant, point toward the harbour entrance. This inflow of water 
in all directions around the entrance results in an increase of wave elevation 
inside the harbour. The magnification of the wave amplitude inside the harbour 
is associated with the proper match of the inflow of water with the outflow from 
the reflexions on the harbour boundary. If the characteristics of the harbour are 
such that the outflow and the inflow of water are properly matched with the 
incident wave, resonance is achieved. The wave-number or period for which the 
proper match can be achieved is a characteristic of the harbour. 
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Figure 11 shows the velocity field for kl = 4, but the incident wave is a t  an angle 
/3 = 45 degrees with the shoreline. The velocity outside the harbour is not 
symmetric with respect to the centreline. However, inside the harbour, the 
velocity pattern is still relatively uniform due to the relative narrowness of the 
harbour. 
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FIGURE 11. Velocity field in a rectangular harbour at kl = 4, /J' = 45'. 

30 units. 

Figure 12 (plate 1) shows two reproduced photos of path-line patterns taken 
by Ippen & Goda. These two photos were taken at  periods T = 0.6 and 0-5 sec, 
as indicated in the figures. The velocity patterns shown on figures 9-1 1 exhibit 
some resemblance to the path-line patterns indicated in figure 12, although no 
quantitative agreement is to be expected since the harbour dimensions are 
different. 

Figures 13 and 14 show the velocity field of an arbitrarily shaped bay. It is 
interesting to see that the velocity inside the harbour is not uniform. The exist- 
ence of such complicated motions results from the phase lag of the reflected wave 
from the complex boundary. Such a complicated motion is more pronounced 
when the incident wave period becomes small, as can be seen from a comparison 
of figures 13 and 14. 
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"11 
FIGURE 13. Velocity field in an arbitrarily shaped bay a t  kl = 1.3, B = 0". 

20 units. 
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FIGURE 14. Velocity field in an arbitrarily shaped bay at kl = 4, B = Oo. 
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On the instability of natural convection 
flow on inclined plates 

By J. R. LLOYD AND E. M. SPARROW 
University of Minnesota, Minneapolis, Minnesota 

(Received 7 October 1969) 

Experiments are carried out to establish the relationship between the nature of 
the flow instability and the inclination angle of the plate. The angular dependence 
of the Rayleigh number characterizing the onset of instability is also determined. 
An electrochemical flow visualization technique is utilized to expose the patterns 
of fluid motion. It is found that for inclination angles of less than 14" (relative to 
the vertical), waves are the mode of instability. On the other hand, for inclination 
angles in excess of 17O, the instability is characterized by longitudinal vortices. 
The range between 14" and 17" is a zone of continuous transition, with the two 
modes of instability co-existing. 

Introduction 
The onset of laminar-turbulent transition in natural convection flow on a 

vertical plate is characterized by wave-type disturbances (ideally, plane waves 
travelling in the streamwise direction). On the other hand, for plates inclined 
such that the surface normal has a component in the upward vertical direction, 
there is a range of angles of inclination for which the onset of transition is charac- 
terized by longitudinal vortices (Sparrow & Husar 1969). The inclination angle a t  
which one type of instability gives way to the other has not beenknown heretofore. 

The present investigation is aimed at  establishing the relationship between the 
inclination angle and the nature of the instability and, additionally, a t  deter- 
mining accurate quantitative information on the angular dependence of the 
Rayleigh number for instability. The realization of these objectives was facili- 
tated by the use of a flow visualization technique which permits observation of 
the three-dimensional character of the flow field. As described later, the visual- 
ization is accomplished by an electrochemical reaction which results in local 
colour changes of the fluid. The working fluid in the experiments was water. 

Prior experimental investigations of natural convection instability on inclined 
plates have been limited by an inability to observe the three-dimensional aspects 
of the flow (Lock, Gort & Pond 1967; Tritton 1963). Consequently, although 
values of the instability Rayleigh number are reported (the accuracy of which 
will be discussed later), the nature of the instability went undetected. Indeed, 
in Lock, Gore & Pond (1967), it was implied that instability on an inclined plate 
is of the same character as instability on a vertical plate. Natural convection 
heat transfer studies on inclined plates have been performed by several investi- 
gators (e.g. Schmidt 1932; Rich 1953; Kierkus 1968; Vliet 1969), but without 
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specific concern for the details of the transition process. Estimates of the insta- 
bility Rayleigh number can be made from some of the available heat transfer 
information. Comparisons will be made between the instability Rayleigh numbers 
determined herein and those of the prior literature. 

Apparatus and measurement technique 
The plate employed in these experiments was designed to present an isothermal 

surface to the flow. It was fabricated from heavy aluminium (coated with nickel 
to minimize corrosion), with fourteen longitudinal channels milled into the 
interior to facilitate the circulation of fluid from a constant temperature bath. 
The plate was 20 em wide and 21.5 em long. Plastic strips were fixed to the 
lateral edges to minimize end effects. The temperature of the heating fluid 
circulating through the plate was controlled to within 0.03 "C by the constant 
temperature bath. 

The plate was placed at  one end of a glass-walled tank whose dimensions were 
58 em in length, 30 em in width, and 40 em in depth. The tank contained water 
plus small amounts of additives as required by the electrochemical flow visualiza- 
tion technique. The leading edge of the plate was positioned about 6 em off t,he 
bottom of the tank. The angle of the inclination of the isothermal surface rehtive 
to the vertical was measured with a protractor, the accuracy of the measurement 
being within one degree. Positive inclination angles denote the situation in which 
the outward normal to the isothermal surface has a component in the upward 
vertical direction, and negative angles correspond to the case in which the 
surface normal has a downward vertical component. 

The flow visualization technique is an adaptation of that described by Baker 
(1966),andwasalso usedinsparrow &Husar (1969). ApHindicator, thymol blue, 
is added to the water in an amount approximately 0.01 percent by weight. The 
colour of the solution is yellow orange when the pH is below 8 and blue when the 
pH exceeds 8. By sequential addition of sodium hydroxide and hydrochloric 
acid, the pH is brought very near to the end-point so that the solution is yellow 
orange in colour. If a small d.c. voltage is applied between two electrodes situated 
in the solution, there is a transfer of electrons at  the cathode, which increases the 
pH and results in a colour change in the fluid at  the cathode. The thus-created 
blue dye is neutrally buoyant and faithfully follows the fluid motion. In  these 
experiments, the isothermal plate served as the cathode. The voltages employed 
were between 6 and 16; volts. 

When the flow instability is characterized by longitudinal vortices, the visual- 
ization pattern is an array of more or less regularly spaced lines aligned with the 
streamwise direction and distributed across the width of the plate (see photo- 
graphs presentedin Sparrow & Husar 1969). Each line corresponds to the outflow 
leg of a longitudinal vortex. On the other hand, in the case of the plane wave type 
of instability, one sees lines transverse to the flow direction, more or less parallel 
to the leading edge. 

The onset of instability is taken to coincide with the first appearance of either 
of the just-discussed types of lines. That is, the lowest point on the plate surface 



Instability of natural convection %ow 467 

at which the lines could be observed was regarded as the point a t  which instability 
first occurred. A single determination of a point of instability was made over a 
span of 10min of careful observation. As discussed later, ten independent 
determinations were made at each angle of inclination. 

The surface temperature of the plate was measured with calibra,ted copper 
constantan thermocouples inserted into holes drilled from the back side of the 
plate. Laboratory grade thermometers were employed to measure the bulk 
fluid temperature. The vertical distribution of the bulk temperature was moni- 
tored throughout each data run. No data were taken when the vertical gradient 
exceeded 0.045 "C/cm. The fluid was thoroughly mixed prior to the initiation of 
each run. The bulk fluid temperature was typically about 20 "C, while the wall to 
bulk temperature difference ranged from 15.5 "C to 27.5 "C. 

ResuIts and discussion 
Nature of theJEow instability 

Experiments were performed for inclination angles ranging from - 10" to 
+ 60". It was initially established that instability is characterized by longitudinal 
vortices for inclination angles exceeding 20°, while waves are the mode of 
instability for angles less than 10". 

The range of angles between 10" and 20" was painstakingly examined to observe 
the manner in which one type of instability gives way to the other. Starting at  20" 
and decreasing the angle of inclination, one first observes the intermittent 
presence of waves at about 17", co-existing with the longitudinal vortices. With 
decreasing angle, the waves become stronger, while the vortices tend to weaken. 
At about 14*, the vortices can no longer be observed. This same behaviour is in 
evidence when one starts a t  10" and increases the angle of inclination. 

Thus, the range of inclination angle from 14" to 17' is a transition zone within 
which the character of the instability changes continuously from waves to 
longitudinal vortices. That is, the transition between the two types of instability 
is not abrupt. 

Instability Rayleigh numbers 

The first occurrence of instability is reported here in terms of the Rayleigh 
number, defined as 

R a  = g/j( T, - Tm) x3/c1v, (1) 

where x is the streamwise co-ordinate, measured from the leading edge, at  which 
instability is first observed. T ,  and T, respectively represent the wall and fluid 
bulk temperatures, g the acceleration of gravity, p the thermal expansion co- 
efficient, and a and v the thermal diffusivity and kinematic viscosity respectively. 
The quantity p/av is a fluid property grouping which is temperature dependent; 
it was evaluated at  the average of T, and T,. 

A t  each fixed angle of inclination, ten completely independent determinations 
of the instability Rayleigh number were made, encompassing a period of several 
days. The mean and standard deviation of these determinations were evaluated. 

30-2 
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The mean instability Rayleigh number for each inclination angle is plotted in 
figure 1, with the fully blackened circles corresponding to the vortex instability 
and partly blackened circles eorresponding to wave instability. A dashed line has 
been faired. through these data points to provide continuity. A listing of the 
mean Rayleigh numbers and the standard deviations is given in table 1. 
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FIGURE 1. Instability Rayleigh numbers. Present investigation (water) : 0, vortex 
instability; @,wave instability. 0, Lock, Gort & Pond (air). 0, Tritton (air). h , Kierkus 
(air). Uniform heat flux: 0, Vliet (water): 0, Vliet (air). A ,  Eckert & Soehngen (air). 
V,  Hermann (air). D , Saunders, (air). D, Szewczyk (water). 

As evidenced by the figure, the instability Rayleigh number varies markedly 
with the angle of inclination. The effect of inclining the plate so that its normal 
has a component in the upward vertical direction (i.e. positive inclination 
angles) is to make the flow more susceptible to instability. On the other hand, a 
plate whose normal has a downward directed component is less susceptible to 
instability. In  the range of angles between - 10" and 60", Ra diminishes by more 
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than three orders of magnitude. For the vertical plate, the present experiments 
give a Ra value of 8.7 x lo8, which, as discussed below, agrees very well with 
prior information. 

In  addition to the present results, figure 1 also contains data from several 
prior investigations, among which that of Lock and co-workers (1967) and of 
Tritton (1963) were concerned with instability and transition on an inclined 
plate. The Lock data were obtained either by observation of schlieren pictures 

Angle (degrees) 

- 10 
0 

10 
20 
30 
35 
45 
50 
60 

Mean Ra 

1.6 x 109 
8.7 x 10' 
4.5 x 108 
2.5 x los 
1.2 x 108 
4.2 x 107 
1.7 x 107 

7.7 x 105 
6.8 x lo6 

Standard deviation 

0.15 x lo9 
1.2 x 108 
1.2 x 108 
0.81 x 108 
0.50 x 10' 
1.1 x 107 
o m  x 107 

4.6 x 105 
2.5 x lo6 

TABLE 1. Mean instability Rayleigh numbers and standard deviations 

or by monitoring the output of thermocouples immersed in the fluid and distri- 
buted along the centreline of the plate. Since the schlieren apparatus necessarily 
averages along the direction of the light path, i.e. along the width of the plate, 
three-dimensional phenomena such as longitudinal vortices are obscured. In  the 
absence of other information, it was presumed by those investigators that wave- 
type instability existed for all angles of inclination, a postulate which is invali- 
dated by the present observations. Each of Lock's data points appearing in 
figure 1 corresponds to a single determination, and generally good agreement is 
seen to prevail with the results of the present study. 

Tritton (1963) employed a fibre anemometer to detect transition. His experi- 
ments were performed in air, and observations were restricted to the midpoint of 
the plate width. As is seen from the figure, the Tritton data fall very much lower 
than those of all other investigators. This state of affairs may well be due to strong 
disturbances in the laboratory room (mentioned by Tritton himself) or to the 
presence of a solid wall situated parallel and above the test plate, thereby pro- 
viding conditions for a channel-like flow. Also, the length of the fibre, 3.07 cm, 
introduces some uncertainty into the evaluation of the distance x that appears in 
the Rayleigh number. 

From inclined-plate heat transfer characteristics determined by Kierkus 
(1968) and Vliet (1969), values of the Rayleigh number for laminar-turbulent 
transition have been deduced and are shown in figure 1. Rayleigh numbers 
arrived at  in this way need not necessarily correspond to the first appearance of 
instability. The Vliet data merit some discussion. They are the only data in 
figure 1 for the uniform surface heat flux boundary condition, all other being for 
uniform surface temperature. It has been demonstrated analytically by Gebhart 
(1969) that the instability of the flow can be influenced by the heat capacity of the 
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thin metallic foils commonly employed in experiments involving uniform heat 
flux. 

For completeness, representative instability and transition data for the 
vertical plate have been brought together and are plotted in figure I .  The main 
body of the data fall in the Rayleigh number range from 2.8 x 108 t.0 2 x lo9. 

Observations made during the course of the present investigation, as well as 
those of prior investigators (e.g. Lock et al. 1967; Tritton 1963; Vliet 1969) 
indicate that the instability Rayleigh number for a fixed angle of inclination 
contains a certain degree of randomness. It was in recognition of this fact that 
ten independent determinations were made at  each inclination angle. The extent 
of the randomness is indicated by the listing of standard deviations in table 1. It 
is seen that the larger the angle of inclination, the more marked the randomness. 

Concluding remarks 
The nature of the flow instability and reliable values of the instability Rayleigh 

number have now been experimentally established for natural convection on 
inclined isothermal surfaces. This body of information is, at least in principle, 
amenable to complementary analytical exploration. Thus far, it  has been demon- 
strated (Gebhart 1969) that linear theory is capable of predicting t’he salient 
features of the instability for natural convection flow on avertical plate. However, 
instability of the flow on inclined plates has yet to be subjected to analysis. 
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Numerical solutions for steady flow past a circular 
cylinder at Reynolds numbers up to 100 
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Department of Applied Mathematics, University of Western Ontario, London, Canada 

(Received 27 June 1969 and in revised form 3 February 1970) 

Finite-difference solutions of the equations of motion for steady incompressible 
flow around a circular cylinder have been obtained for a range of Reynolds 
numbers from R = 5 to R = 100. The object is to extend the Reynolds number 
range for reliable data on the steady flow, particularly with regard to the growth 
of the wake. The wake length is found to increase approximately linearly with 
R over the whole range from the value, just below R = 7, at which it first appears. 
Calculated values of the drag coefficient, the angle of separation, and the pressure 
and vorticity distributions over the cylinder surface are presented. The develop- 
ment of these properties with Reynolds number is consistent, but it does not 
seem possible to predict with any certainty their tendency as R+m. The first 
attempt to obtain the present results was made by integrating the time- 
dependent equations, but the approach to steady flow was so slow at higher 
Reynolds numbers that the method was abandoned. 

1. Introduction 
Numerical solutions for two-dimensional flow past a circular cylinder can be 

divided into two broad classes. First, there are those obtained by integrating the 
equations of steady motion. Thom (1928) gave the first solution at  R = 10, 
where R is the Reynolds number based on the diameter of the cylinder. Sub- 
sequently Thom (1933) gave a solution at  R = 20 and Kawaguti (1953b), Apelt 
(1961) have both obtained solutions at  R = 40. The general features of all these 
solutions and their development with Reynolds number are in agreement with 
experimental observations. For example, they indicate an approximately linear 
growth with Reynolds number of the standing vortex pair behind the cylinder. 
This is in agreement with the experiments of Taneda (1956). 

On the other hand, solutions given by AlIen & Southwell (1955) over the range 
R = 0 to lo3 and by Dennis & Shimsoni (1965) for the range R = 0.01 to 106 are 
generally thought to be unreliable at  the higher Reynolds numbers. The main 
reason is that both sets of results indicate that the length of the vortex wake 
starts to decrease for some value of the Reynolds number between 10 and 100. 
This effect is most likely to be the result of numerical inaccuracy. Recent calcula- 
tions by Hameliec & Raal (1969) also indicate an ultimate decrease in wake 
length as R increases. The only reliable solutions of the equations of steady 
motion beyond R = 40 appear to be the results of Takami & Keller (1969), in 
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which the Reynolds number range of calculations by Keller & Takami (1966, 
p. 115) has been extended to  R = 60. These results again indicate linear depend- 
ence of wake length on Reynolds number up to R = 60. One of the main objectives 
of the present work has been to  obtain some check on these results and to  extend 
the Reynolds number range. It was found that reliable results could be obtained 

The second class of numerical solutions comes from integrating the time- 
dependent equations of motion. The first solutions for a circular cylinder were 
given by Payne (1958) for R = 40 and 100 and subsequently re-investigated by 
lngham (1968), but Kawaguti & Jain (1966) appear to  have been the first to  have 
continued the integrations for sufficiently large times for a steady flow configura- 
tion to  be reached. Steady solutions were obtained in this way for R = 10 up to  
50, but solutions for R = 60 and 100 were discontinued after a large time and 
before a steady state was reached. The slow rate of approach to the final solution 
for larger values of the Reynolds number seems to be one of the main objections 
to obtaining steady solutions by integrating the time-dependent equations. 
Recent results of Son & Hanratty (1969) at R = 40, 200 and 500 seem to suggest 
that the wake in the cases R = 200, 500 had far from settled down when the 
integrations were stopped. The steady drag value at R = 500 was estimated by 
extrapolation. 

Kawnguti & Jain had previously found it necessary to  estimate steady drag 
values by extrapolation at higher Reynolds numbers. The same slow approach 
to the steady solution was noted when the present solutions were first attempted 
by time-dependent methods. Integrations a t  R = 70 and 100 were discontinued 
after a large time because of the extremely slow build up ofthe wake. It might also 
be noted t h a t  solutions of the equations of steady motion may not be stable for 
these Reynolds numbers (see, for example, Van Dyke 1964, p. 150), and insta- 
bility could tend to  obviate an approach to the steady solution through the time- 
dependent problem. I n  any case, the general evidence seems to suggest that the. 
time-dependent method is not anefficient method of calculating steady solution s 
Its  main use remains as a method of predicting flows which do not tend to  a steady 
state as time increases. Solutions with this principal objective have been obtained 
by Hirota & PvIipkoda (1965) and by Thoman & Szewczyk (1966). 

One of the objects of obtaining numerical solutions for steady flow past a 
cylinder is to attempt to gain information on the nature of the theoretical steady 
flow limit as R-tm. This is still unknown, but various models have been sug- 
gested. A recent review by Roshko (1967) indicates concepts of considerably 
differing nature. The classical model is the discontinuous potential flow theory 
of Kirchhoff as propounded, for example, by Squire (1934) and Kawaguti (1 9 5 3 ~ ) .  
This model gives a finite drag on the cylinder as R+co, with a wake of infinite 
length and zero velocit,y separated from an inviscid region by free streamlines. 
Batchelor (1956) has proposed a limiting solution with a closed wake of finite 
length, containing two regions with uniform vorticity, associated with zero drag 
on the body. Acrivos, Snowden, Grove & Petersen (1965) have suggested that 
the wake remains viscous in character as R-tm, and that its length grows 
linearly with the Reynolds number. This model is based mainly on the results of 

UP to R = 100. 
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experiments in which the wake was stabilized using a splitter plate, thereby 
allowing steady flow patterns to be obtained for Reynolds numbers up to 180. 
Further results in support of the model have been given by Acrivos, Leal, 
Snowden & Pan (1968). 

In the present paper, the results of calculations for R = 5 , 7 , 1 0 , 2 0 ,  40, 70 and 
100 are given. They were obtained by solving finite-difference approximations 
to the equations of steady motion. Reasonable precautions have been taken to 
ensure that the solutions are accurate. The numerical procedures have been 
described fully by Dennis & Chang (1969a, 19693) and will only be summarized. 
The results up to R = 40 are given in order to show the consistent develop- 
ment of the physical properties with Reynolds number. They are in excellent 
agreement with the results of Takami & Keller, and the numerical procedures 
are sufficiently different to provide a completely independent check. The 
development beyond R = 40 is also consistent with Takami & Keller’s solutions 
and to some extent with the model of Acrivos et al., in that the length of the 
wake continues to elongate in proportion to the Reynolds number and its 
breadth remains roughly of the order of the cylinder diameter. 

2. Equations and method of approximation 
The equations are given in dimensionless form, corresponding to a cylinder of 

radius r = 1 in a uniform stream of unit magnitude with its direction that of the 
positive axis of x. Modified polar co-ordinates (&e)  are used, where = log r .  
The equations governing steady motion are: 

Here, $ is the dimensionless stream function and C; is the negative dimensionless 
vorticity. They are defined respectively by the equations $ = @-‘/Ua and 
< = - a c / U ,  where @’ and <’ are the dimensional stream function and vorticity 
for a cylinder of radius a in a uniform stream U .  The Reynolds number is defined 
in the usual way as R = 2aUlv. The flow is assumed to possess symmetry about 
the axis of x, and the boundary conditions necessary to obtain a solution in the 
region 2 0, 0 < 8 < 7r are 

(3) 
$ = - = O  a$ €or [ = O ,  

a t  

[+0 as C+m, ( 5 )  

$ = c = o  for B = o , T .  ( 6 )  

A numerical solution is obtained on the square grid shown in figure 1, which 
also shows the numbering system adopted for a set of points surrounding a 
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typical point 0. The line 5 = Em is taken as an outer boundary on which approxi- 
mations to the conditions at infinity, equations (4) and ( 5 ) ,  may be assumed to 
hold. The numerical method consists of replacing (1) by finite-difference approxi- 
mations on this grid. It is convenient to write 

h(t.8) = - (7)  

o = o  
FIGURE 1. Domain of integration and grid structure. 

The finite-difference equation obtained by replacing derivatives in (1) by the 
simplest possible approximations in central differences at 0 is 

(8) 

Satisfaction of (8) at  every internal grid point of the region O X  Y Z  of figure 1, 
subject to boundary conditions for cat every grid point of the boundary O X Y Z ,  
defines a numerical approximation to the solution of (1). 

Boundary conditions on O X  and Y Z  are given by (B),  and we can take 5 = 0 
on X Y as a crude approximation to (5 ) ,  assuming Crn large enough. An improve- 
ment on this latter boundary condition is given by Dennis & Chang (1969a). The 
approximation = 0 is replaced by, effectively, a gradient condition for 5, on the 
assumption that the flow for & 2 &,,, is governed by Oseen’s linearized equations. 
The details are almost the same as those already published by Dennis, Hudson 
& Smith (1968) and will be mentioned only briefly. The Oseen problem, which 
is valid for large c, is obtained by replacing the derivatives of $ in (1) by the 
expressions obtained from the boundary conditions (4). The equation which 

(1 +hhd d +  (1  +hpo) L+ (1 - h U  L+ (1 -44 6- 4 L  = 0. 
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results can then be solved formally and from the solution it is deduced, provided 
E; is large enough, that 

where x = $Reg. Here, G(8) is a function of 8 alone and thus, if (9) is assumed to 
hold for E; 2 gm, we obtain the approximation 

5(t ,  8 )  G(8) x-4 exp {x(cos 8 - l)}, (9) 

C(E;,@ = 5(t-,m @)exP((X-X,n) (cosd- 1 ) - N - C 7 ? J h  (10) 

where xm is the value of x at E = tm. In  particular, if we put E; = cm + h in (lo), an 
expression for C(tm +h, 8)  in terms of c(tm, 8) is obtained which can be used, in 
a similar manner to a gradient-type boundary condition, to eliminate C1 from (8) 
whenever the point 0 is situated on E; = cm. 

The condition for C on E; = 0 depends upon the solution of ( 2 ) .  It is in the 
method of solution of ( 2 )  and the calculation of boundary values of 6 on E; = 0 
that the present method differs from the usual finite-difference procedure. 
A solution of ( 2 )  is assumed in the form 

which automatically satisfies the conditions for $in (6). Substitution in ( 2 )  gives 

~ & - T z Y .  = r*&(E;) (TZ = 1,2,3,  ...). (12) 

Here, primes denote differentiation with regard to E; and 

From (31 it follows that 

and the equations (12) can be solved as a step-by-step integration, provided 
r,(E;) is known for sufficient values of n (say up to no) on all grid lines of constant 
E; from E; = 0 to 6 = tm. The number no is the number of terms taken to approxi- 
mate the infinite sum in (1 1). One further equation is necessary to complete the 
procedure. It can be deduced from the properties of the solutions of (12). In  
order that (4) shall be satisfied it is necessary that the condition 

r m  

is satisfied, where Sl = 1 and 8, = 0 (n = 2,3,  ...). When the left side of (15) is 
expressed as a numerical quadrature formula over the grid lines of constant 6, 
and with the upper limit approximated by Cm, it gives a formula for rn(0) in terms 
of grid values of r,(E;) for 5 + 0. Thus, the condition (15) is used for calculating 
values of ~ ~ ( 0 ) .  From these values we can calculate C(0,O) from the result 

00 

@, 8 )  = C rn(() sin no, 
n=l 

which follows from (13). In  practice, the summation is again approximated by 
no terms. 
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3. Calculation procedure 
Suppose that a grid size h, a value for tm, and a value for no have been assigned 

for a given Reynolds number. A numerical solution is obtained by repeating the 
following cycle of steps until convergence is achieved. Suppose a starting approxi- 
mation to @ is known and a boundary condition <(O,t?) has been calculated 
from ( l6) ,  using values of r,(O) determined to satisfy (15). Then: 

(i) <(t, 6) is determined by solving the equations (8) subject to the calculated 
boundary condition for <(0,6) and the other specified conditions on the remaining 
boundaries. 

(ii) rn( t ) ,  (n = 1,2,  ..., no) is calculated from (13) for all 6 + 0. 
(iii) r,(O) is calculated to satisfy (15) and hence a new approximation to <(O, 0) 

is found from (16). 
(iv) The equations (12) are solved for n = 1,2,  . . ., no and a new approximation 

to $(& 0) found from (1  1) .  This completes one cycle of the iteration. 
Convergence of the procedure is decided by comparing some representative 

feature of two successive solutions. Many comparisons are possible. The one 
chosen was 

for all n < no, where e is a specified accuracy parameter and m, m + 1 denote two 
successive iterates. This is a very representative convergence test because each 
r,(O), through (13) and then through (15), is calculated from a weighted sum 
involving every value of < (except those on = 0) in the computational field. 
The test ensures, through (16), that the boundary vorticity has converged. One 
of the interesting features of the present method is that the vorticity on the 
cylinder is calculated by integration right throughout the field rather than from 
a few isolated values of @ near t = 0, as is the case in the usual finite-difference 
method of approximating (2). Moreover, equation (16) determines < ( O , O )  as 
a continuous function of 6 more or less regardless of the grid size used in solving 
(1) provided, of course, that it is reasonably small. Features of the flow at the 
cylinder surface, such as the point of separation of the flow, can be determined 
accurately from (16). 

The calculation procedure has been described in more detail by Dennis & Chang 
(19690,1969b) and only two points will be mentioned. The numerical evaluation 
of ~ ~ ( 6 )  from (13) is performed using the method of Filon (1928), since this gives 
uniformly accurate results, even if n is large. Finally, at stage (iii) of the above 
calculation procedure, the new value of <(O, 6 )  is not introduced directly as a new 
boundary condition on OZ. If a previous boundary condition <Crn)(O, 6 )  gives rise, at  
stage (iii), to a calculated value <*(O, O), the actual value introduced in the next 
iteration is 

where 0 < K < 1. This is an empirical process of averaging which may prevent 
divergence of the iterations, by taking K small enough. It has been used in a 
number of the numerical studies cited in the introduction, often in a wider 
context than that used here, where it is applied only to the boundary of the 
cylinder. 

(r(,rnfl)(O) - rp ) (o ) l  < € 

<(rn+”(O, 0) = KC*(O,  0) + (1  - K )  < y o ,  O), 
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Numerical solutions have been obtained for values of the pa,rameters shown 
in table 1. The values of K could possibly be considerably larger; this point has 
not been fully investigated. For each Reynolds number, a numerical solution 
was obtained, using the above iterative method, in which the approximation to 
<(t, 8) ultimately satisfied (8). Then, in order to check the accuracy and improve 

R h 

5 n/40 
7 3/40 
10 z/40 
20 3/40 
40 n/40 
70 3/60 
100 3/60 

n0 

20 
20 
20 
30 
30 
40 
40 

K 

0.05 
0.05 
0-05 
0.05 
0.05 
0.03 
0.015 

TABLE 1. Parameters used in the calculations 

upon it, the difference correction method of Fox (1947) was used to obtain a higher 
approximation to (1). If Lo denotes the left side of (8), a higher approximation 
to (1) which takes into account all central differences up to the fifth can be 
written 

where 
(17) &+KO = 0, 

12Ko = 4(1 +h&) c1 4(1 +h&) C2-k 4(1-h&) '&+ 4(1 -hpo) [ p  

- (1 + 2hho) b - (1 + 2%0) L o -  (1 - 2hho) Cn- (1 - 2hPo) Qz- %o. (18) 

When the grid size is small enough, the correction KO, evaluated using the 
converged solution which satisfies Lo = 0, should be reasonably small everywhere. 
This gives some check that the grid size has been chosen properly. 

An improvement to the solution can be obtained by setting up a new iteration 
which includes the correction. If in the old iteration, without correction, an 
iterate <(")(C, 8)  is obtained by solving the difference equations Lhm) = 0, the new 
iteration consists of solving the equations 

Lh"' + Kg-1' = 0. (19) 

Here, the vector KO is calculated from the previous iterate [("-l)(,$, 8) and held 
fixed during the determination of the new iterate Qrn)(E, 8). Provided the initial 
correction is small enough, the sequence of iterates converges to a limit which 
satisfies (1  7), in which Lo and KO are mutually consistent. 

There is no difficulty in calculating the correction KO a t  any point of the field. 
On grid lines adjacent to 8 = 0 and 8 = T,  the formula (18) involves values of 
6 which lie outside the field of computation OX YZ, but these can be expressed 
in terms of internal values of 5 from the relations 

C ( t 7  - 8)  = - at, 81, a,$, T + 8)  = -at, 7r - Q, 
which hold because the flow is symmetrical about the axis of x. External values 
of < also enter the calculation of KO a t  grid points on X Y  and on the adjacent 
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grid line fl  = f l m  - h. In  view of the fact that the boundary condition on f l  = f l m  
rests on the assumption that the flow for fl  2 f l m  is Oseen flow, the necessary 
external values are calculated from ’( 10). Finally, if the typical point 0 is on the 
grid line [ = h, the value Cll is external to the field. In this case 

azC/;lacz + a2C/a02 = 0 when [ = 0 

and hence, approximately, 
Cll = 4<3 - <o - <I3 - C7, 

which enables Q1 to be calculated from internal and boundary values of 5. 
In  the present results, the difference correction method yielded only a small 

change from the solutions computed to satisfy (8). For the lower Reynolds 
numbers the changes in the main physical properties, such as the total drag 
coefficient, were almost negligible while for R = 70 and 100 the properties 
changed by only a few per cent, certainly less than 5 yo. This suggests that the 
final results are of good accuracy, and also that the grid sizes given in table 1 are 
satisfactory. The values of t;, in table 1 which give the position of the outer 
boundary X Y were obtained as the result of experience, as also was the number 
of terms, no, used to approximate the infinite sums on the right sides of (1 1) and 
(16). The effect of varying both of these parameters was studied, and it was 
found that an increase in either parameter beyond the values indicated in the 
table had negligible effect on the computed solution. The whole question of the 
effect of the imposed boundary conditions on [ = f l m  on the internal solution has 
been discussed in detail by Dennis & Chang (1969 a ) .  

4. Results 
Streamlines of the motion for the range R = 5-100 are shown in figure 2. 

Separation has started at R = 7, and the length of the wake, L, from the rear of 
the cylinder to the end of the separated region, grows approximately linearly 
with R over the whole range. The calculated length of the wake is compared with 
other theoretical calculations and with experimental measurements in figure 3. 
It is also given numerically in table 2. There is very good agreement with the 
recent calculations of Takami & Keller up to R = 60, and the same straight-line 
development is continued beyond this by the present results. Kawaguti & Jain’s 
results, obtained by time-dependent methods, appear to be departing from the 
linear relationship after R = 20. Son & Hanratty do not give the steady wake 
length for Reynolds numbers greater than 40. 

Despite good agreement of Kawaguti & Jain with Son & Hanratty for the 
wake length of about L = 5 a t  R = 40, both investigations have used the rather 
coarse grid size n/30 in the 0 direction. This may lead to a spurious lengthening 
of the wake, for a similar effect was observed in an attempt, by present methods, 
to obtain the time-dependent flow a t  R = 100 with a square grid of size ~ 1 4 0 .  
By the time L had reached its steady limit it was almost 22, nearly 11 diameters 
of the cylinder. The vortex pair had also become distorted and fat, very much 
after the manner of Son & Hanratty’s results for R = 200 and 500. A reduction 
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of the grid size to n/60 gave, in essence, the results of figure 2 (g) ,  although it was 
not possible to continue the integrations to the fully steady state. Although 
Son & Hanratty have used a rectangular grid, with considerably smaller grid 
sizes in the 6 direction, the grid size in the t9 direction is rather coarse. In  the wake 
at  large distances, the grid size in the t9 direction dominates the accuracy at  least 
as much as that in the 6 direction. This is evident from the rapid exponential 

0.173 
0.087 pp LO-0017 0.017 3 0 

(4 
FIGURES 2 ( a d ) .  For legend see p. 480. 
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variation of 5 in the 0 direction when ( is large, as indicated by the expression (9) 
obtained from Oseen theory. The variation depends, essentially, on how rapidly 
x( 1 - eos 0) varies with 0 for a given value of x. The grid size in the B direction 
should be small enough to allow representation of the exponential variation 
adequately by finite differences for the largest value of x, x = xm, in the domain 
of the numerical solution. This point has been considered more fully by Dennis 
& Chang (1969a). 

The vorticity vanishes at  the point of separation and it follows from (16) that 
the angle of separation, 0 = 0,, is a root of 

m 

C rn(0) sinno = 0. 
n=l 

1.223 

1.262 

0.258 

cp) 
FIGURE 2. Streamlines for steady flow past a circular cylinder. Values of the dimensionless 
stream function, $, ere shown for each streamline. Values of $ for the closed streamlines, 
$c, are given following the Reynolds number, where appropriate, starting from the centre 
of the wake. (a) R = 5 ;  (a) R = 7 ;  ( c )  R = 10: $c = -0.0002; (d )  R = 20: $rc = -0.008, 
-0-0058; (e) R = 40: +e = -0.0328, -0.0246, -0.0164, -0.0082; (f) R = 70: 
31.c = - 0.07, - 0.06, - 0.035, - 0.023 ; (9) R = 100: @c = - 0.1, - 0.08, - 0.05, - 0.035. 
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FIGURE 3. Calculated and experimental values for the wake length. Numerical solutions : 
0, this study; 0 ,  Takami & Keller (1969) ; A, Kawaguti & Jain (1966) ; + , Apelt (1961) ; 
H, Kawaguti (1953b); 0, Thom (1933). Experimental measurements: A, Acrivos et al. 
(1968): x ,  Taneda (1956). 

R 
5 
7 

10 
20 
40 
70 

100 

L 

0.19 
0.53 
1.88 
4.69 
8.67 

13.11 

15.9 
29.6 
43.7 
53.8 
61.3 
66.2 

Cf ell C D  P(0) 
1.917 2.199 4.116 -1.044 
1'553 1.868 3,421 -0.870 
1'246 1.600 2.846 -0.742 
0.812 1'233 2.045 -0.589 
0.524 0.998 1.522 -0.509 
0.360 0.852 1'212 -0.439 
0'282 0.774 1.056 -0.393 

P(7d 
1.872 
1.660 
1.489 
1.269 
1.144 
1-085 
1.060 

TABLE 2. Calculated properties of the numerical solutions. The angle of 
separation, 68, is given in degrees 

31 FLM 42 



482 S. C .  R .  Dennis und G-Z.  Chang 

Calculated values of 8, are given in table 2. They are in extremely good agreement 
with the calculations of Takami & Keller, who give the respective values 
8, = 14.5", 29.3", 43-65', 53.55", 56.6", 59.0" a t  the Reynolds numbers 7, 10, 20, 
40, 50 and 60. Son & Hanratty's value at  R = 40 is 0, = 53-9", while Kawaguti 
&, Jain's is 53.7". Separation first starts to take place at some critical Reynolds 
number between 5 and 7 for which 8, = 0. It may be deduced with the aid of (16) 
that this Reynolds number is that which makes the sum 

B(R) = 5 nr,(O) 
n=l 

vanish. The approximations B(5) = 0.100 and B(7) = - 0.068 are obtained from 
the present results. A linear interpolation suggests the critical Reynolds number 

The dimensionless drag coefficient is defined by C, = D/pU2a, where D is the 
total drag on the cylinder, and p is the density. The total drag may be obtained 
by integrating the total stress component in the direction of x around the surface 
of the cylinder. If  r, is the pressure and, as previously noted, 6' is the dimensional 
scalar vorticitg, then 

as R = 6.2. 

D = - lozT (pvc; sin 8 +po cos 8) a do, 

where v is the coefficient of kinematical viscosity and the subscript zero denotes 
a value at 6 = 0. The second term in the integral may be dealt with conveniently 
by integrating by parts and eliminating the pressure gradient using the equation 
of motion in the direction of 8. It may then be shown that 

The first term on the right gives the friction drag coefficient and the second the 
pressure drag coefficient, denoted respectively by C' and C,. If the result (16) is 
substituted, the simple expressions 

c, = 277T,(O)/R, 

C, = 2n{2r,(0) -v i (O)} /R  

are obtained, where the prime denotes differentiation with regard to g. Actually, 
it was found to be slightly more satisfactory to calculate C, by direct numerical 
evaluation of the second integral in (21) using values of (a</a& obtained by 
numerical differentiation. Calculated drag coefficients are given in table 2 and also 
in figure 4, where the total drag coefficient is compared with other numerical 
results obtained from integrations of the equations of steady motion and with 
the experimental measurements of Tritton (1959). A recent estimate of 
C, = 1.172 at R = 100 has been given by Hameliec & Raal, but the associated 
wake length of L = 9.48 seems much too low and is likely to be due to the fact 
that the boundary 6 = 5, has been taken too close to the cylinder. 

The drag coefficient calculated from (21) enables some check to be made on 
the corresponding numerical solution in view of the fact that the nature of the 
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flow a t  large distances is known. From the solution of Imai ( 1  951) it is known 
that, as c+o(), 

@( 5 ,O)  - ec sin 0 - $C,( 1 - Ojn), 

5 -  

4 -  

3 -  
C D  

2 -  

n 

X 
X 

X 
X 

x 

a x  

d 
X 

x x  
0 
' 

eXX 
xx 

X 
Et 

X 

% "  
* x  

xx x"x 

'x b x  
@ % W q  ' #wF> 

1 -  0 

I I I I I l l  I I 1 I I 1 1 1 ~  

3 5 7 10 20 40 70 100 

R 

FIGURE 4. Calculated and experimental values for the total drag coefficient. Numerical 
solutions of the equations of steady motion: 0, this study; 0 ,  Takami & Keller (1969); 
v, Apelt (1961); a, Kawaguti (1953b); 0, Thorn (1933). Experimental measurements: 
x , Tritton (1959). 

except on 6' = 0, where a finite discontinuity exists. It follows that the solution 
of the set of equations (12) must be such t,hat 

f,*(5) - 6, eg - Coim (22) 

where 8, has the meaning already assigned in (15). In  the numerical procedure, 
the coefficient of l /n  on the right side of (22) is not specified, but emerges as the 
result of the calculations. This gives the required check, although it is a stringent 
one and cannot be expected to be satisfied to high precision, since, effectively, 

31-2 
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it checks the balance of outflow and inflow over a very large contour surrounding 
the cylinder. It may be applied to  the numerical solutions, for example, by 
subtracting the exponential term from the right side of (22) when n = 1 and 
comparing the tendency of the remainder, as g increases, with the value obtained 
using (21). 

I n  all the computed results, a tendency consistent with (22) was observed, but 
the precision of the check is hindered by two factors. First, it is not known how 
closely the limiting behaviour should be approached a t  the finite upper limit, 
6 = i&, imposed on a given numerical solution. Further, any attempt to increase 
c7,$ unduly leads to  a fluctuation in the coefficient of l/n in (22) as calculated by 
the numerical integration procedure. This is noticeable only near 5 = and is 
due to the increasingly poor finite-difference approximation to  5 in the wake. 
On the whole, however, the coefficient of l /n as determined from the numerical 
integration was found to approach within about 10% of the theoretical value 
consistent with calculation from (21), which is considered to  be satisfactory in 
view of the two factors mentioned. Some other numerical checks were also carried 
out. For example, the effect of varying the number, no, of terms used to approxi- 
mate the summation on the right side of (11)  was considered. More terms are 
needed as R is increased, but no = 40 is still adequate at R = 100. If we take, as 
an illustration, the variation of wake length with no a t  this Reynolds number 
we find L = 9.12, 12-03 and 12.99 a t  values no = 10, 20, 30. The final value 
(table 2) for no = 40 is L = 13.1. 

One of the possible models for the limiting flow as R -+ 00 is the discontinuous 
potential flow of Kirchhoff type. Imai (1957) has given the large Reynolds 
number formula 

based on this model. Here, a is an unknown constant and C,, is the drag coeffi- 
cient of the limiting Kirchhoff flow. Brodetsky (1923) gives C,, = 0.5 for a 
circular cylinder. On the basis of this value, Takami & Keller have estimated 
a by evaluating it from (23) using their drag values a t  R = 50 and 60, and then 
extrapolating linearly in R-I as R-tw. The value obtained in this way is 
a: = 3.547. A similar procedure carried out with the present values of C, a t  
R = 70  and 100 gives a = 2.99. This discrepancy in estimates of a is a little too 
large to assume any reliable confirmation of the formula (23), and neither value 
of a gives values of C, which compare particularly well with the calculated 
values C, = 0-924 and 0-60 given by Son & Kanratty a t  R = 200 and 500. On 
the other hand, if we assume an asymptotic boundary-layer-type expansion for 
the friction drag in powers of R-4, and fit the first two terms to the present 
results for R = 70 and 100, we obtain 

This not only fits the value at R = 40, but gives respective values C, = 0.18 and 
0.10 at  R = 200 and 500. These compare well with Son & Hanratty’s respective 
values C, = 0.19 and 0.09. 

C$ - Cb, +aR-t (23) 

C, N 1.83R-4 + 9.95R-1. 

The dimensionless pressure coefficient 
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where p0(@ is the pressure on the cylinder surface and p ,  the uniform pressure 
at large distances, is calculated from the formula 

2.0 

1.5 

1 .o 

0.5 

P 

0.0 

- 0.5 

- 1.0 

- 1.5 

8 

FIGURE 5. Pressure coefficient on the cylinder surface. 

Curves of the pressure coefficient are given in figure 5, and its values a t  the rear 
and the front of the cylinder are given in table 2. Both of these values are of 
interest. According to the exact solution for stagnation point flow (see Schlichting 
1960), the coefficient a t  the front of the cylinder should behave, for large Reynolds 
number, like P(n) - l+pR-l, 

where p i s  a constant. Takami & Keller have estimated p = 5.985 by calculation 
from (26) a t  R = 50 and 60, followed by linear extrapolation in R-I as R-too. 

(26) 
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A similar extrapolation from the present results a t  R = 70 and 100 gives 
$ = 6-09, which is in reasonable agreement. 

The variation with R of the pressure coefficient a t  the rear of the cylinder is 
of interest in view of two models which have been proposed for the separated 
flow a t  high Reynolds number. I n  a model suggested by Roshko and by Sychev 
(1967), the behaviour for large Reynolds numbers should be 

P(O) * A R d ,  (27) 

where A is a constant. The model of Acrivos et al. (1.965) suggests that P(0)  
becomes constant as the Reynolds number increases. Recent experimental 
observations of Acrivos et al. (1968) tend to confirm this. It is found that the 

0.15 

0.45 

0.15 

0.45 

0.45 

0.15 

(b) 
FIGURE F. Equi-vorticity lines for steady flow past a circular cylinder. Values of the 
negative dimensionless vorticity, [, are shown for each equi-vorticity line. (a )  R = 70; 
(b )  R = 100. 

observed coefficient tends to  become constant a t  quite moderate values of R, of 
the order of 100. Unfortunately, the results of the present calculations do not 
give any definite information one way or the other. The variation of P(0) is not 
rapid enough to fit (27). Neither is this coefficient obviously approaching a 
constant, at least, certainly not in the range - 0-47 to - 0-43 suggested by the 
experimental results for circular cylinders. This point requires further 
elucidation. 

The variation of vorticity throughout the flow field for Reynolds numbers 
70 and 100 is indicated by equi-vorticity lines in figure 6. For lower Reynolds 
numbers, the vorticity distributions are, in essence, the same as those given by 
Takami & Keller. The dimensionless negative vorticity on the surface of the 
cylinder is shown in figure 7. No reasonable prediction can be made as to  its 
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tendency for large Reynolds number and, in particular, as to the ultimate position 
of the separation point. Son & Hanratty have noted that in their solutions for 
late times, the vorticity near the front stagnation point is significantly less than 
that predicted by boundary-layer theory with the potential solution for the 

10 

a 

6 

5 4  

2 

0 

-2  
135" 90" 45" 0" 

e 
FIQURE 7 .  Vorticity distribution over the surface of the cylinder. 

external flow. The same effect has been noted in the present solutions and may 
be indicated as follows. The local coeacient of skin friction is cf = r0/&pU2, where 
T,, is the local shearing stress, and it follows that 

In the neighbourhood of the front stagnation point we put 8 = 7r - 4, and it may 
then be deduced from (16) that, for small 4, 

Cf = 4Rd1C(0, 0). 

where 

R*cf N Sg,  

S(R)  = 4R-4 2 ( -  l)n+lnrT,(0). 
m 

n= 1 
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As .R+co, S(R) should tend to the constant value of approximately 9.861 con- 
sistent with stagnation point flow (Schlichting 1960, p. 153). For the three 
highest Reynolds numbers R = 40, 70 and 100, the series S(R) converges rapidly, 
and we obtain the respective values 

S(R) = 6.59, 6.70, 6-89. 

The discrepancy with boundary-layer flow at  these Reynolds numbers is 
therefore substantial. 

Part of the work described in this paper was carried out while one author 
(S.C.R.D.) was a visitor to the Mathematics Research Centre, U.S. Army, 
University of Wisconsin. A detailed account of the investigation, including full 
details of the numerical method, is given in the report by Dennis &, Chang 
(1969a) which has been cited. Copies of this report can be obtained from the 
Mathematics Research Centre, and a copy has been deposited in the editorial 
office of the Journal of Fluid Mechanics. 

Part of the work was supported by Contract no. DA-31-124-ARO-D-462, and 
part was sponsored by the National Research Council of Canada. The numerical 
calculations were performed on the CDC 3600 of the University of Wisconsin and 
on the IBM 7040 of the University of Western Ontario. 
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The bed configuration of straight sand-bed channels 
when flow is nearly critical 

By H. Y. CHANG 
San Diego State College, Sctn Diego, California 

AND D. B. SIMONS 
Colorado State University, Fort Collins, Colorado 

(Received 19 March 1969 and in revised form 30 January 1970) 

The diagonal pattern of bed form which appears in sand-bed channels when the 
channel width to depth ratio is great and the flow is nearly critical is discussed 
from the theoretical viewpoint by using the method of characteristics. Some 
photographs illustrate the phenomenon. 

1. Introduction 
The diagonal sand waves occur in straight sand-bed channels with smooth 

walls, when the flow is nearly critical (or the Froude number is near unity) with 
a certain depth to width ratio. This phenomenon has been observed previously 
by Vanoni & Brooks (1957), Shen (1961) and Guy, Simons & Richardson (1966) 
in their studies of resistance to flow and bed-material discharge in an 8 foot wide 
flume at  Colorado State University during the period 1956-1958. According to 
Shen, this kind of diagonal pattern is probably due to water-surface fluctuations. 

From further observations by the authors, the diagonal sand waves on a sand 
bed are associated with the water-surface undulation which is a type of disturb- 
ance that occurs when flow changes from supercritical to subcritical or vice versa. 
Flow bounded within the diagonal disturbances is essentially continuous, 
whereas a discontinuity exists for flow across the disturbances, see figure 1. The 
discontinuity in a flow field is usually determined by the method of characteristics 
which is used most often for problems inthe field of gas dynamics (Owczarek 1964). 

2. Theoretical considerations 
In  a straight alluvial channel with a large width/depth ratio, the vertical 

motion is neglected and the equations of motion in the longitudinal and transverse 

(1) 
directions are 

where U and W are average velocities per unit width in the longitudinal and 
transverse directions, Sis the channel slope, h the local depth of flow, andr,, = yhS 
(shear stress at  channel bottom). 
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(3) 

The continuity equation for water discharge is 
a a ah 

- (Uh)+&(Wh)  = --- at . 
ax 

84.1 aq3 ah0 -+- = - ( I -h)-  
ax az at 

The continuity for sediment transport requires 

where q1 and q3 are the discharges of sands per unit width in the longitudinal and 
transverse directions, h is the porosity of sands, and ho is the channel-bed eleva- 
tion. 

Disturbances across which 
flow is discontinuous 

Regions within which 
flow is continuous 

Disturbance - 
Section A-A 

FIGURE 1. Schematic drawing showing diagonal lines in shallow channel flow with Froude 
number near unity. 

The discharge of sands in a sand-bed channel depends on many variables. 
Colby (1964) has found that in streams where differences in depth, water tempera- 
ture, and size of bed sand are not excessively large, the discharge of sands per 
unit width is proportional to the average velocity. If we assume that the dis- 
charges of sands are proportional to the velocity components, i.e. 

U P  = q1Iq33 

(4) at 
then 
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The movement of diagonal sand waves has been observed to be very slow, 
hence the unsteady terms in the above equations can be neglected. The above four 
equations, together with the equations for total differentials can be written as 

au au 
ax a Z  

u-+ w- = F,(h,x), 

au au 
ax-+az- ax az = d U ,  

aw aw 
dx-+dz- ax az = dW, 

(9) 

This system of simultaneous equations for the partial derivatives aU/ax, 
aU/dz ,  awlax, awl&, ahlax, ahlax, aq,/ax and 8q1/az has independent variables 
x and z, and dependent variables U ,  W ,  h and ql.  The coefficients of the partial 
derivatives in (5) to (8) are functions of dependent variables only. This system of 
equations is called quasi-linear because each equation is linear with respect to the 
derivatives of the highest (in this case, first) order. Therefore, these equations 
can be analyzed by the method of characteristics. 

Using Cramer’s rule, the derivative aU/ax can be determined from the quotient 
of two determinants 

a u p x  = k , p ,  

where k, = 

F , W O O g O O O  
F 2 0 U W O g 0 0  
0 O O h U W O  0 

d U d Z O  0 0 0 0  0 
d W O d z d z O O O  0 
dh 0 0 0 d x d z O  0 

dg, 0 0 0 0 0 ax dz 
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and N =  

u w o o g o o o  
0 o u w o g o  0 
h O O h U W O  0 

d x d z O O O O O  0 
0 O d x d z O O O  0 
0 0 0 0 d x d z  0 0 
0 0 0 0 O O d x d z  

Similarly, other derivatives are 

where k,, k,, . . . , k, are appropriate determinants. 
The necessary condition for the partial derivatives to be indeterminate, or 

there would be a discontinuity in the flow field, is that the determinant N = 0. 
The directions in the ( x , z )  plane in which the determinant N = 0 are called 
characteristic directions and curves along which N = 0 are called characteristic 
curves. If the flow under consideration permits the existence of discontinuities 
in the form of water surface undulations, their paths can only be represented by 
the characteristic curves. Hence, the characteristic curves may represent the 
diagonal paths of disturbances. 

Letting N = 0, we obtain 

( W d x -  Udz)2[(Ia7dx- Ud~)~-gh(dx) ’]  = 0. (13) 

The four roots of the above equation are 

dx tJ dx U dx 
d z  W ’  d z - w ’  d z - W m )  dz  W - J(yh) ’ 

They are independent of the sediment discharge. The first two roots are stream 
lines, and the characteristic direction represented by the last two roots is of 
principal interest to us. These roots can be written as 

ax U 
and - = 

U 
- - - - .- - 

In this equation, if we assume that W is small and hence negligible, then 

dxldz = U/d(gh).  (15) 

(16) 

Since water surface undulations occur when the flow is nearly critical, or 
U = J(gh), then dxldz & 1.  

Equation (16) indicates that the disturbances occur on lines approximately 
45” from the flow direction. Thus, we have verified that the sand-wave patterns 
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associated with the accompanying water surface undulations are diagonal. 
Figure 2, plates 1 and 2, shows the diagonal bed form of channel flows when the 
water had been shut off, as observed by Guy, Simons & Richardson in an 8 foot 
wide laboratory flume. The Froude numbers (q = U/J(gh)) and width to depth 
ratios for all runs are also listed. 

3. Conclusions 
The diagonal bed form usually occurs in alluvial channels with a large width to 

depth ratio and with the flow nearly critical (or the Froude number near unity). 
The diagonal bed form is associated with the water-surface undulation which is a 
disturbance across which the flow changes from supercritical to subcritical or 
vice versa. It has been verified in this paper that the disturbance or the sand 
wave occurs on lines approximately 45" from the flow direction. 
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FIGURE 2(a), (5 ) .  For legend see plate 2. 

Plate 1 

(Facing p .  496) 
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FIGURE 2. Diagonal bed patterns in a laboratory flume witzh large width t,o depth ratios 
and with the flow nearly critical. (a) Froude number = 0.92, width to depth ratio = 24. 
( b )  Froude nnmbor = 0.83, width to depth ratio = 28.5. (c) Froude number = 1.12, 
width t o  depth ratio = 18. 
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The development of horizontal boundary layers 
in stratified flow. Part 1. Non-diffusive flow 

By R. E. KELLY AND L. G. REDEKOPPF 
School of Engineering and Applied Science, 

University of California, Los Angeles, California 90024 

(Received 15 September 1969) 

The development of the boundary layer on the upper surface of a horizontal flat 
plate in a non-diffusive, stratified flow is described. It is shown that the flow can 
be characterized by two basic parameters, the Reynolds (RL) and Russell (RuL) 
numbers, and that, depending on the relative magnitude of these two parameters, 
three different regimes of flow can be defined. The delineation of these regimes 
and the description of the flow in each of them is obtained by deriving a uni- 
formly valid first approximation to the Boussinesq equations of motion for a flow 
contained in the two-dimensional parameter space Ru, > 0, RL > 1 .  The critical 
stratification for the self-blocking of a horizontal boundary layer is shown to be 
given by the condition RuL = O(Ri) .  

1. Introduction 
Stratified flows in a gravitational field exhibit many remarkable phenomena 

which are nonexistent in the flow of homogeneous fluids. The development of the 
boundary layer on a horizontal plate is one example. When the stratification is 
large and the motion of the fluid is slow, a boundary layer whose thickness 
decreases in the downstream direction appears and a viscous wake exists upstream 
of the plate. This is in striking contrast to the familiar downstream growing 
boundary layer and downstream viscous wake existing when the fluid is homo- 
geneous. 

Long (1 959) first observed experimentally and described theoretically the 
existence of a viscous wake with a multiple jet-like structure upstream of a body 
moving horizontally in a stratified fluid. He derived a similarity solution which is 
valid far upstream of an obstacle and showed that velocity perturbations relative 
to the horizontal free stream decay algebraically (d) with distance measured 
upstream from the obstacle. The solution characterizes the blocking of the flow 
ahead of a body. 

Martin (1966) and Martin & Long (1968) subsequently investigated the boun- 
dary layer above a slowly moving horizontal plate under conditions for which an 
upstream wake occurred. Their experiments, as well as those performed by Pao 

7 Present address : Department of Aerospace Engineering, University of Colorado, 
Boulder, Colorado 80302. 
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(1968), showed the remarkable result that the boundary-layer thickness de- 
creased in the downstream direction. They were able to describe this flow 
structure theoretically by solving the equations of motion in which the advective 
terms and density diffusion were neglected. They also demonstrated that, when 
density diffusion is allowed, the diffusion boundary layer continues to  grow in 
the downstream direction just as in the case of homogeneous flows. 

The purpose of this investigation is to provide a parametric study of the 
influence of density stratification on the development and structure of horizontal 
boundary-layer regions. The appearance of upstream wakes and upstream 
growing boundary layers implies that a critical stratification exists for which the 
thickness of a downstream growing boundary layer becomes sufficiently large to 
induce blocking. Blocking of a flow ahead of an obstacle can be understood on the 
basis of energy considerations, but the occurrence of a self-blocking due solely to 
the action of viscosity is more difficult to understand. The establishment of a 
criterion for determining which boundary-layer structure appears for specified 
flow conditions is one of the objectives of this study. 

Another interesting aspect of boundary layers in stratified media concerns the 
coupling between the viscous boundary layer and the outer inviscid flow. From 
existing studies of boundary layers in homogeneous flows, we know that the boun- 
dary layer displaces the outer flow in a direction transverse to the external flow. 
Since stratification effectively inhibits vertical motions, the question arises as to 
the interaction between the outer stratified flow and a horizontal boundary layer. 
Furthermore, since any non-trivial stratified flow is rotational, the boundary- 
layer induced perturbation on the external flow establishes a possible vorticity 
interaction with the boundary layer. These effects are investigated for the flow 
over a horizontal plate by deriving a uniformly valid solution to first order, with 
the magnitude of the density stratification Id lnp/dx,l appearing as a parameter. 

2. Formulation 
We consider the development of a viscous boundary layer on the upper surface 

ofa horizontal flat plate of length L in a stably stratified flow (as shownin figure 1). 
Taking the viscosity pa, the specific heat cp,, and the thermal conductivity k, 
to be constant, the dimensionless equations of motion for steady, low speed 
( M z  < 1; M = Mach number), thermally stratified flow are 

V . ( p q )  = 0, 
1 

p ( q - V ) q  = - v p -  f - f i  - - v x (V x q), 
FL RL 

and P = P ( T ) .  (4) 

The equations have been made dimensionless by scaling the independent variables 
with the plate length L, the velocity with its free-stream value U,, the density 
and temperature by their respective values a t  the level of the plate (pa and To), 
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and the pressure by the dynamic head (poUg). The three dimensionless para- 
meters appearing in the above equations, the Froude number FA, the Prandtl 
number Po, and the Reynolds number RL are defined as 

The equation of state (4) denotes that the fluid is inconipressible in that changes 
in pressure induce negligible changes in density. This is consistent with the 
restriction of the analysis to low speed ( M 2  < 1) flows. 

The above equations are written explicitly for thermally stratified flows, but 
they also describe molecularly stratified flows if T is replaced by the mass fraction 
of the biasing species and the Schmidt number is substituted for the Prandtl 
number. 

+.+ 
FIGURE 1. A schematic of the flow model. 

The structure of the velocity field above the plate is studied first for the 
limiting case of a large Prandtl number. In this limit (Po-+co), the diffusion of 
heat can be neglected and the energy equation reduces to 

(q.V)T = 0, ( 6 )  

(q.V)p = 0. (7 )  

or by use of the equation of state (4), 

The diffusive case (arbitrary Prandtl number) is studied in part 2 of this analysis. 
Combining (1) and (7))  the continuity equation reduces to the incompressible 

form v * q  = 0. 

Assuming the plate is infinitely wide so that the flow can be taken as two-dimen- 
sional, (8) permits the introduction of a stream function @ defined by 

Equations (6) and (7 )  can then be integrated to yield 

T = T(@) and p = p ( @ ) .  (10) 

The analytic forms of p($ )  and T($) are determined by the boundary conditions 
far upstream of the plate. Results (9) and (10) provide a great simplification and 

32-2 
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permit the system of equations (21, (7)  and (8) to be written in terms of a single 
equation for the stream function II.. 

Considering a density stratification given by 

p(x+- m, 2) = p,(z) = e-Pa = e--(PoL)xdL, (11) 

and invoking the Boussinesq approximation, the vorticity equation is obtained 
in the form 

V2*+Ru&kz = 0, (121 

a 
ax where L(2, z ,  yk) = $,-- 

The operator L(x,  x ,  $) appears extensively throughout the succeeding analysis 
and, for convenience, is written in shorthand form where the symbols in the 
parenthesis indicate the horizontal and vertical co-ordinate variables and the 
dependent variable of the operator in that order. The parameter RuL represents 
the Russell number, a designation originally ascribed by Miles (1968). It is 
defined as 

where 

N denoting the intrinsic frequency. Two independent parameters appear in (12); 
the first parameter, R:', scales the viscous termsrelative to  the inertia terms, and 
the second, Rug, scales the buoyancy term relative to the inertia terms. Their 
relative magnitudes can be expected to play an important role in determining the 
flow structure in the vicinity of the plate. 

The boundary conditions applicable to (12) for the problem depicted in figure 1 
are 

$ ( X , O )  = 0, (x < 01, 

@ ( X , O )  = $, (X ,O)  = 0, (0 6 x < L ) ,  

$,(x+-m,z) = @a(2,z+m) = 1 .  

(16) 

and 

We now seek a uniformly valid first approximation to  the solution of ( la) ,  
subject to  the conditions (16)) for large Reynolds numbers but with the Russell 
number varying from small to large values. 

3. The boundary-layer approximation 
Consider first the flow region in the immediate vicinity of the plate where 

viscosity has a first-order effect. Anticipating that the vertical scale of this 
region is small relative to the horizontal length of the plate, we introduce the 
boundary-layer transformation 

y = Z / B ,  6 =s(RL, RuL) 6/L 1, 

and $(x, 4 = e Y 2 ,  Y ) ,  (17) 
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where E is a function of the parameters that appear in the differential equation 
(12). The functional form of E is determined by requiring the coefficient of the 
highest order viscous term to be unity and all remaining terms in the vorticity 
equation to be of order unity or smaller. 

Introducing the transformation (17) into the vorticity equation (12) yields 
the boundary -layer equation 

Buoyancy contributes to the vorticity balance in the boundary layer in proportion 
to  the square of the Russell number based on the boundary-layer thickness 6,  
since 

The Russell number based on a representative vertical dimension of an obstacle 
characterizes the structure of the flow over the obstacle (cf. Long 1953, 1954, 
1955, 1959; Miles 1968) and, when that Russell number becomes large, the flow 
is blocked upstream of the obstacle. 

Two limiting cases of (18) are now considered. First, when the Russell number is 
small (small stratification, RL > Rug), the boundary layer is characterized by a 
balance between the inertia and viscous terms with the familiar scale 

E = eiiv = RE$. (20) 

The buoyancy term is then of order (RukIR,). Writing the stream function as a 
perturbation sequence in E ,  

Y ( x ,  y; 8 )  = Y(1)(x, y )  +a(s)Y(Z)(x, y) + ... ) (21) 

and substituting into (18), we obtain for W) the equation 

This equation can be integrated once with respect to y to yield the Blasius 
equation (cf. Rosenhead 1963, p. 222). The solution, YB, say, obtained by means 
of the similarity transformation 

y = -  Y 
X+' 

Y(')(x, y) = Y B  = x'fl(y)> (23) 

is well-known. A property of YB which has important consequences in the 
subsequent development is that the solution is not uniformly valid since 

or 
(24) 

The second case we consider is the limit of large Russell numbers (large 
stratification, RL < Rug). The boundary-layer scaling is then given by 

E = ebV = (R,Rug)-*. (25) 
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Bince inertia terms are then of order (RtIRu,), the first-order boundary-layer 
vorticity equation becomes 

which corresponds to  a balance between the diffusion of vorticity and the baro- 
clinic generation of vorticity. Equation (26) was first derived by Long (1959) in 
his analysis of a viscous wake upstream of an obstade. Later, a similarity solution 
t o  (26) was obtained by Martin & Long (1968) describing the boundary layer on a 
horizontal flat plate. They showed that, in order to obtain a physically meaning- 
ful solution to  the parabolic equation (26), the direction of the time-like variable 
x had to be reversed, leading to  a boundary layer with upstream growth and an 

5 =  1--x, upstream wake. If we let 

(26) ypL1’ - y r c ~ )  
VUYU = 0, 

so that Yg)+Y$juU = 0, 

the similarity solution is of the form 

?] = y/& 

w ( z ,  y) = !r1, = z:fl (q). (27)  

Their solution, YL, is uniformly valid in that the vertical velocity approaches 
zero exponentially fast a t  the outer edge of the boundary layer. 

A useful representation of the above results which clarifies the interplay 
between the two parameters RuL and RL is obtained by replacing the Russell 
number by a power of the Reynolds number, 

R u ~  = Rg. (28) 

The vertical scale e of the first-order boundary layers for the inertia-viscous 
balance (22) and the buoyancy-viscous balance (27) are then given by 

ei7, = RE$, 
- R-&(N-kl) 

€bo - L 9 

(29) - ‘bu - - ~ $ 1  I L ) .  

4 u 
so that 

Using the latter relation, we can delineate three distinct boundary-layer types 
depending on the relative magnitude of the Russell and Reynolds numbers. 
For n < 1, eiiv < ebo and the first-order boundary layer is the Blasins one (221, in 
which convection and diffusion of vorticity are balanced. When n > 1, ebv < ciiv, 
and the first-order boundary layer is described by Long’s equation (27). The 
third boundary-layer type occurs when the condition n = 1 is satisfied. In  this 
case eiv = ebv and convection, diffusion, and baroclinic generation of vorticity are 
all of equal order in the boundary layer. The governing first-order equation then 
becomes 

We refer to this case as the critical boundary layer since it is transitional between 
a downstream growing boundary layer (n < 1) and an upstream growing boun- 
dary layer (n > 1). A similarity solution of (30) is possible only for the case of an 
accelerated flow (U,  N &). 
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The above three equations, (22)) (27), and (30) describe all the possible first- 
order boundary layers on a horizontal surface in a stratified flow. Their classifica- 
tion depends strongly on the relative magnitude of the Russell and Reynolds 
numbers. To obtain a uniformly valid approximation to the entire flow structure, 
however, we must also examine the outer flow, to which the solutions of the above 
equations must match. 

4. The outer flow 

(28) and equation (12). The stream function expansion for the outer flow is 
I n  considering the outer flow, we use the Russell-Reynolds number relation 

$(x, 2 ;  6 )  = z +a,(€) ? p ( X ,  2 )  f . . . , (31) 

where the first term on the right describes the zeroth-order motion. The gauge 
function is equal to e and takes on the value dictated by the first-order 
boundary layer as given in (29). Substituting the above expansion into (12) 
yields the following equation for the outer flow 

Examining this equation, we again find that there are three different cases 
depending on the value of the exponent n, i.e. on the magnitude of the Russell 
number. When n < 0, the last term on the left-hand side is smaller than unity 
and, in fact, vanishes in the limit (RL-to3). The first-order outer flow is then 
governed by the equation 

(33) 

The outer flow in this case is determined by a balance between the inertia and 
pressure forces while the buoyancy and viscous terms appear only in higher order 
equations. When n = 0, the inertia and buoyancy terms are of equal importance, 
and the first-order outer flow is described by the equation 

a 
- vzyw = 0 (7% < 0). 
ax 

The stratification is now sufficiently large that the boundary-layer displacement 
effect renders the baroclinic generation of vorticity a first-order role in the outer 
flow. Thirdly, when n > 0, the buoyancy term in equation (32) dominates, and 
the first-order flow is governed by the equation 

= 0 (n > 0). 
a p )  
ax 

__ (35) 

This relation is analogous to the Taylor-Proudman theorem in rotating flows 
and expresses the fact that the constraining influence of stratification is suffi- 
ciently large to inhibit vertical motions. The outer flow is then in hydrostatic 
balance regardless of the boundary-layer displacement effech. 
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An incompatability in the above set of equations is immediately apparent. 
For n < I ,  the first-order boundary layer is described by the Blasius equation 
which requires that the first-order outer flow satisfy the matching condition 

@(')(x, 0) = - 1 . 7 3 0 ~ 4  (n < 1).  (36) 

However, for n > 0 the outer flow is governed by (35), which clearly does not 
admit a solution satisfying condition (36). Hence, we must conclude that for 
0 < n < 1 either the steady flow breaks down into some unsteady structure or a 
more complicated coupling exists involving a n  intermediate layer through which 
the Blasius solution and the solution @(I) = 0 of (35) can be properly matched. 
We assume the latter to be true and re-examine (12) and (18) in the parameter 
range 0 < n < 1. For n > 1, no difficulty occurs since the boundary-layer solution 
?,hL from (27) is uniformly valid. 

5. The intermediate layer 
Examining the boundary-layer equation (22) and the outer-flow equation 

(35), i t  is clear that  the outer flow is governed by a pressure-buoyancy (hydro- 
static) balance, while the boundary layer is characterized by a balance between 
the inertia, pressure, and viscous stress terms. The importance of the buoyancy 
term must diminish as one approaches the plate from the free stream, and the 
importance of the inertia terms must diminish as one proceeds away from the 
plate toward the free stream. Intuitively then, one expects that a region exists 
between the boundary layer and the external flow wherein an inertia-pressure- 
buoyancy balance occurs. 

To derive the correct first-order approximation to the flow in the intermediate 
region, we introduce the transformation 

A 

and ?/?(., 2) = (e/a)Yl'(z, @). (37) 

Substituting (3'7) into (12) we obtain the equation 

Choosing CT so that a proper balance of terms is maintained leads to the condition 

g = R-#l-n), L (39) 

whereby the inertia and buoyancy terms are balanced and the viscous stress 
terms are a t  most of order gZ. The characteristic vertical scale AI of the inter- 
mediate region is 

A I / L  = (./a) = R Z ~ I ~  (0 < n < 1). 

When n = 0, the intermediate layer contains the entire outer flow and, as the 
stratification is increased (increasing n),  the vertical extent of the layer decreases 
until it is completely contained within the primary boundary layer when n = 1. 
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Thus, an intermediate region described by the scaling (40) and equation (38 )  can 
be defined. However, to conclusively demonstrate the existence of a double 
structure for 0 < n < 1, it is necessary to show that solutions of ( 3 8 )  are possible 
satisfying the conditions 

A h 

W)(X, 0 )  = - 1.730xt and W ( x ,  co) = 0. ( 4 1 )  

This topic has been considered in detail by Redekopp (1969), who demonstrated 
that such solutions are impossible unless the horizontal co-ordinate is scaled 
along with the vertical co-ordinate. The x scaling that is required is exactly 
equivalent to the z scaling, i.e. 

(0  < n < 1). 

This is the only scaling which allows a consistent matching between the boundary 
layer and the outer flow. Observe that when n = l , B  is of the same order as the 
boundary-layer thickness, which suggests that perhaps the complete Navier- 
Stokes equations are required to describe the n = 1 case. This presents a plausible 
explanation as to how the transition between the two parabolic cases ( 2 2 )  for 
(n < 1) and (29) for (n > 1) is accomplished. 

A justification for the scaling ( 4 2 )  is provided by the following consideration. 
Outside the primary boundary layer, the representative length for the flow is no 
longer that of the body ( L ) ,  but the characteristic wavelength of internal waves. 
This is precisely what the scaling ( 4 2 )  accomplishes, as can be seen by defining a 
length h equivalent to the length of a wave oscillating at  the intrinsic frequency 
N and moving with velocity Uo, 

Rescaling the x variable with h we obtain 

The order of magnitude of the viscous terms is then 

€(T = Ril+!zn (44)  

which is of order ( R i l )  as in the case of homogeneous flow when n = 0 and of order 
( R Z ~ )  when n = 1. 

The stream function expansion for the intermediate layer is of the form 

where the form of y(RL) is chosen so that q ( Q ( 2 , g )  matches to the Blasius solution 
Y,. Carrying through the matching yields 

and @(l)(2, 8 = 0 )  = - 1.7302.6. 
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The first-order equation for the intermediate layer then becomes 

R. E .  Kelly and L.  G .  Redekopp 

This equation is applicable for the parameter range 0 < n < 1. Its form, together 
with the boundary conditions, is identical to the first-order equation for n = 0. 

6. The flow due to boundary-layer displacement 
In  this section we present the solution for the first-order outer flow induced 

by the displacement effect of the Blasius boundary layer. Since the exact shape 
of the displacement body in the downstream wake is unknown, we calculate the 
outer flow as if the plate were semi-infinite. 

For Russell numbers less than unity (n < O), the outer flow is potential (equa- 
tion (33)), and the solution satisfying the matching condition (36) is given by 
Van Dyke (1964, p. 134). It can be written in the form 

@')(Z,Z) = -0.865 ( ( x + ~ x ) ~ + ( x - ~ z ) & )  = - 1-730r~c0~ gH. (48) 

For 0 6 n < 1, the outer flow is described by the Helmholtz equation (equations 
(34) and (47)) which we write in the form 

V2q5+a2q5 = 0, 
with the boundary conditions 

(49) 

q5 = o(x) as (xZ+z2) +GO, 

$(x,O) = 0 for x < 0, 

and $(x, 0) = - 1.730~8 for x > 0. (50) 

It is understood that (2, Q) are substituted for (x, x) when 0 < n < 1 and that $ 
denotes either or %l) depending on the value of n. The parameter a is included 
to indicate explicitly the role of the Russell number. 

The solution of the Helmholtz equation describing the flow of a stratified 
fluid over various shaped obstacles has been the concern of a number of investi- 
gators, particularly as it relates to the phenomena of internal waves in the lee 
of mountain ranges. Queney et al. (1960) and Miles (1968) have given compre- 
hensive reviews of the existing solutions. For the solution of the boundary-value 
problem (49) and (50), we follow the development by Graham (1966) for the flow 
over an arbitrarily shaped slender body, Graham's solution is given in the form 

where f ( x )  is the dipole density and #,(x, x) denotes the solution of (49) for an 
isolated dipole of strength b 
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In  the framework of small disturbance theory, which is clearly applicable, the 
dipole density is related to the vertical perturbation velocity w(l) a.t the altitude 
z = O b y  

,f(z, o) = j: w(1)(5, = +a(l*730~1). (53) 

Note that the dipole strength depends directly on a, or, using the basic parameters 
of the problem, the Russell number Ru,. This reflects the fact that the scale of the 
flow outside the boundary layer must change as the Russell number increases. 
Since the boundary-layer displacement is independent of the stratification to this 
order, (53) requires that the independent variable x be scaled in such a way that 
the dipole strength is always comparable to the magnitude of the boundary-layer 
displacement velocity w(l)(z, 0), even when the Russell number is large (0 < n < 1). 
This is precisely what the intermediate layer scaling (43) accomplishes. 

Substituting the results (52) and (53) into (51), the solution for #(x, z )  becomes 

x sin 

The first term, which is identical to the solution (48) for potential flow, derives 
from the integration of the first term in (52). The effect of density stratification is 
then contained solely in the integral term of (54). 

The integral and sum in (54) were evaluated numerically by integrating 
between the limits < = 0 to 5 = 100 and taking ten terms of the sum. An upper 
limit of ten for the summation was chosen because it corresponds to approxi- 
mately a ten-fold decrease in magnitude between the first and tenth terms. 
Since there is no characteristic geometrical length for a semi-infinite plate, all 
lengths are scaled by the stratification length 

Numerical values were computed for x ranging between x = - 5 and x = 20 in 
increments of Ax = 0.2 with z ranging between z = 0-25 and z = 3.0. The first- 
order, uniformly valid solutions for a = 1.0 and Reynolds numbers of 100 and 
1000 are shown in figure 2, where 

$(x, z )  = z + €$(1’(2,Z) + €(Y - Y ( l ) ( X ,  y)), 

and 

No wave pattern appears and the streamlines exhibit the same general shape that 
exists for homogeneous flow. This is somewhat surprising in light of Lyra’s 
(1943) solution for the flow over a semi-infinite plateau (forward facing step) 
which shows a very distinct pattern of waves. A possible explanation for this is 
that there is a critical bluntness for a monotonic, semi-infinite body which must 
be exceeded if waves are to be generated. For the flow over a finite flat plate, the 
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thickness of the displacement body decreases downstream of the trailing edge of 
the plate and it is quite likely that a wave pattern would appear in the downstream 
flow field. 

Another interesting feature of the solution (54) is that the horizontal pertur- 
bation velocity vanishes as z tends to zero indicating that there is no coupling 
between the first-order outer flow and the second-order boundarylayer. It is worth 
noting that a coupling between the outer flow and the second-order boundary 
layer does exist when the non-Boussinesq terms are included in the outer flow 
equations. As will be demonstrated in part 2 ofthis analysis, a coupling enters via 
the:thermal field when diffusion is allowed, even in the Boussinesq approximation. 

3.0 - 
2.5 - 

I I I I J 
20.0 

-0.5 I 
-5.0 0 5.0 10.0 15.0 

z = 

FIGURE 2 .  The first-order streamline pattern for the case n = 0. -, streamlines for 
Rg, = 100; - - -, streamlines for Rga = 1000. 

7. The second-order boundary layer 
In  the parameter range 0 < n < 1, the boundary-layer expansion is given by 

$(x, Z) = RL*[Y(')(X, 9) + a(RL)Y2)(x,  ZJ) + ...I, 

@(x, Z) = RE*%[@ + Rig+inY(l)(x, ZJ) + . . -3. 

(57) 

(58) 

and, from (45) and (46), the corresponding outer-flow expansion is 
A 

Substituting (57) into the boundary-layer form of the vorticity equation (18)) 
we obtain the equation 

If there is a forcing of the second-order boundary layer arising from the first- 
order outer flow @(I)), the gauge function a is given by 

On the other hand, the forcing arising from the baroclinic term requires that 

M. = R2-I. (Gob) 
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The contributions from these two forcing effects are equal when n. = 8. When 
n < +the baroclinic generation term has no influence on the solution to first order. 
However, when n > Q the second-order boundary-layer contribution due to the 
baroclinic generation of vorticity is more significant than the correction to the 
outer flow due to the displacement effect of the first-order (Blasius) boundary 
layer. A uniformly valid solution to first order, then, requires that Y(z)(x ,  y) be 
evaluated for Q 6 n < 1 using (59) with homogeneous boundary conditions and 
a given by (60b). For the flow over a flat plate, Y!(2) has the same form throughout 
the range 0 < n < 1 since the displacement induced horizontalvelocityvanishes at 
the plate surface (at least in the Boussinesq approximation) so that the boundary 
conditions and the differential equation are the same for the entire range. 

Using the Blasius solution (equation (23)), a similarity solution of (59) is 
possible and has the form 

wheref,(q) satisfies the equation 

(61) Y(”(X, Y) = @f2(7), 

The forcing term on the right-hand side is known from the Blasius solution and 
corresponds to the streamwise derivative of the temperature as expressed by (10). 
It is equal to the negative of the first-order vertical velocity and, therefore, 
approaches a constant value as q becomes large. Consequently, (62) reveals that 
the second-order shear approaches a constant for large 7 

lim f” = - lim (fl-7f;) = 1.730. (63) 
7-a 7-+a 

This violates the definition of a boundary layer and indicates that another inter- 
mediate layer must exist in which the shear decays to zero. It appears that the 
same difficulty is encountered in higher-order terms for n < 0 as well. We are 
investigating this problem further in an attempt to resolve the difficulty (solu- 
tions for the second-order boundary layer for Prandtl number of order unity are 
given in part 2). 

8. Summary 
We have found that two characteristic parameters describe the boundary- 

layer flow of a stratified fluid, the Reynolds and Russell numbers, and that their 
relative magnitude define three different regimes of flow. These regimes are given 
by (i) Ru, < O(l ) ,  (ii) O(1) 6 RuL < O ( R i ) ,  and (iii) RwL > O ( R i ) .  The ranges of 
applicability of each of these regimes are shown schematically in figure 3. In the 
first case the inner flow is the familiar Blasius boundary layer and the outer flow 
is potential. In  the second case, the primary boundary-layer flow is still described 
by the Blasius equation, but an intermediate region exists in which the flow 
induced by the displacement effect of the boundary layer adjusts to a parallel 
outer flow. Both dependent variables must be scaled with the wavelength of 
waves oscillating at  the natural frequency and moving with the free stream 
velocity in order to obtain a consistent representation of the outer flow in this 
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r6gime. In  the third case, the boundary layer changes from one with downstream 
growth to one with upstream growth. The upstream flow is then changed and, in 
order to maintain a balance between the diffusion of vorticity and the baroclinic 
generation of vorticity, the streamlines must diverge in the downstream direction 
and an upstream wake appears. 

M 
0 
4 

10 r 

8 -  

* Critical outer n=0\ 
flow characteristic 
4 
1 2 3 4 5 6 7 8 9  

-2 

1% RL 

FIGURE 3. The various flow regimes in Russell number-Reynolds number parameter space. 

L= L, 

I I 

l0gRz1 

FIGURE 4. The qualitative effect of the plate length on the critical (1% = 1) boundary-layer 
flow characteristic. 

Another useful representation of the flow is obtained by writing the Russell- 
Reynolds number relation (28) in terms of the running length x1 

The magnitude of the Reynolds number based on the total plate length and the 
relative magnitude of the Russell and Reynolds numbers (characterized by n) 
define the slope of the flow characteristics in the two-dimensional parameter 
space Ruzl - RZ1. Suppose we observe the flow at a fixed position on a plate, which 
we denote as the point Q in figure 4. Furthermore, suppose that this point lies 
below the critical boundary-layer characteristic (n = 1) for a plate of length 
Ll so that the boundary layer grows in the downstream direction. Then, if the 
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plate length is increased to L,, L, > L,, the slope of the critical characteristic 
decreases and we see that, if L, is sufficiently large, self-blocking occurs and an 
upstream wake and upstream growing boundary layer appear. Hence, for given 
flow conditions, one can always find a plate sufficiently long so that blocking 
occurs. 
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The development of horizontal boundary layers in 
stratified flow. Part 2. Diffusive flow 

By L. G. REDEKOPP 
Department of Aerospace Engineering 

University of Colorado 
Boulder, Colorado 80302 

(Received 15 September 1969) 

The boundary layer on the upper surface of a horizontal plane in a diffusive, 
stratified flow is examined. The analysis shows that density diffusion increases 
the role of the buoyancy forces and causes a significant change in the properties 
of the boundary layer when compared to  the non-diffusive case. A uniformly valid 
first approximation for moderate Russell numbers is derived, and the effects of 
buoyancy and diffusion are evaluated by solving the resulting equations 
numerically. 

1. Introduction 
I n  part 1 of this series (Kelly & Redekopp 1970, hereafter referred to as I), we 

examined the boundary-layer structure for steady, stratified fluid motions on the 
assumption that the Prandtl (or Schmidt) number was very large, whereby the 
effects of density diffusion could be neglected. The results showed that three 
different regimes of flow are possible, depending on the relative magnitudes of the 
Reynolds and Russell numbers, and demonstrated that the coupling between the 
boundary layer and the external flow plays a crucial role in determining the 
overall features of the flow. 

Martin & Long (1968) considered the effect of diffusion for the flow over a 
flat plate when the velocity boundary layer grows in the upstream direction. 
They show that the diffusion boundary layer grows from the leading edge 
irrespective of the Russell number. Obviously then, the diffusion and velocity 
layers intersect somewhere over the plate surface, and diffusion can strongly 
affect the trailing-edge singularity and the existence of a downstream wake. 
The analysis of Martin & Long (1968), however, was limited to  large Schmidt 
(Prandtl) numbers and t o  the flow region near the leading edge of the plate where 
the velocity boundary layer is thick relative to  the diffusion boundary layer. 

I n  the present paper, the restriction to large Prandtl numbers imposed in I is 
relaxed in order to establish the effect of density diffusion on the flow structure in 
general and the boundary-layer properties in particular. It is known that the 
relative thickness of the viscous and diffusion boundary layers is determined 
solely by the magnitude of the Prandtl number. Hence, when the Prandtl number 
is of order unity or smaller, the coupling between the velocity and thermal fields 
can be1expected to be important, especially within the boundary layer. Also, 

33 F L M  42 
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heat diffusion can contribute significantly to the magnitude of buoyancy forces 
in the boundary layer and furthermore, as the Prandtl number decreases, the 
vertical scale over which these buoyancy forces act is increased. The combination 
of these effects is investigated for the flow over a horizontal plane. The general 
flow structure above a finite plate with diffusion is discussed in $ 3 and a similarity 
solution of the boundary-layer equations with buoyancy and heat diffusion is 
derived in $4. Numerical results are presented in $ 5. 

2. Formulation 
We consider the development of the velocity and thermal boundary layers on 

the upper surface of an isothermal, horizontal plate of length L immersed in a 
fluid tha t  is in uniform motion with velocity U,. The fluid is assumed to be stably 
stratified, and tfhe stratification is assumed to derive from a linear space-distribu- 
tion of temperature given by 

TShJ = To(1 + P O % ) .  (1) 

A schematic of the flow configuration is given in figure 1.  The fluid motion is 
assumed to obey the Boussinesq equations, which for the steady flow of a viscous, 
heat-conducting fluid are 

v .q  = 0,  (2) 

(q.V)T = K,V~T (4) 

and P = POP - ao(T - T0)I. 15) 

The quantities g, p ,  p, and T are, respectively, the velocity, pressure, density, and 
temperature of the fluid at  the point (xl, z3); vo and K~ denote the kinematic vis- 
cosity and thermal diffusivity (which are constants in the limit of the Boussinesq 
approximation; a, represents the coefficient of thermal expansion; and fc is a 
unit vector in the vertical direction. Symbols with the subscript ' 0 ' correspond to 
undisturbed values a t  the altitude of the plate (x3 = 0). Use of the linear density- 
temperature relation (5) and a linear stratification in an unbounded flow is 
consistent with the Boussinesq approximation providing (ao TopO)-l is large 
compared to a characteristic vertical dimension of the phenomena being de- 
scribed (e.g. the boundary-layer thickness). 

Introducing the dimensionless state variables 

p" = = 1 -a(/3z+OT*) 
Po 

and 
1 + - [ x  - 4ap221, * - P-Po P -- Pou; FL 
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and following a procedure similar to that used in I ,  the system of equations (2) to 
(4) can be reduced to the set of coupled equations 

and 

The stream function $, Froude number FL, Prandtl number Po, Reynolds 
number RL, and operator L(x,  z, $) are defined in I, 8 represents the thermal 
driving potential across the boundary layer 

--- 

FIGURE 1. A schematic of the flow model. 

,8 is a dimensionless stratification scale (POL), and a denotes a dimensionless 
thermal expansion coefficient (ao To). The asterisk has been deleted from the 
temperature since all the variables are clearly dimensionless. In what follows, a 
will be taken to be unity, which is the case for a perfect gas, and the ratio ,818 is 
taken to be of order unity. The results can be applied to any fluid with arbitrary 
a by multiplying 8 and p by a as can be seen from (9) and (10). Both (a8) and (@) 
must be smaller than unity for the Boussinesq approximation to be valid. The 
limiting case of 8 approaching zero requires that a new dimensionless temperature 
(HT*) be defined, but then the boundary conditions will depend on 8. 

I n  I we were able to  combine the three parameters 8, p, and FL into one 
parameter, the Russell number. That is possible only in the limit of infinite 
Prandtl number whereby the temperature is constant along a streamline. When 
the Prandtl number is finite, heat diffuses across streamlines and the simplified 
representation for Tis destroyed. I n  the diffusive case, then, four basic parameters 
are required t o  describe the flow, and the characterization of the flow in a two- 
dimensional space (EL, RuL) as in I is no longer possible. 

The boundary conditions for the flow depicted in figure 1 are 

$ ( G O )  = 0, (12a)  
(126) 
(12c) 

qkz(x,O) = 0 for 0 Q x Q 1 ( 1 2 4  

T(z,O) = 1 for 0 Q x d 1. (12e) 

$&,z+co) = ~&X+-m,z) = 1,  
T ( x , z + ~ )  = T(Z+-CO,Z) = 0, 

33 2 

and 
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These conditions complete the specification of the problem under considera- 
tion. 

Now we seek to obtain an approximate solution to equations (9) and (10) 
subject to  (12) for the case when the Reynolds number is large compared to 
unity. The objective is to establish the effect stratification has on the velocity 
and temperature field near a horizontal boundary and also on the friction and 
heat transfer a t  the boundary. 

3. The flow structure for arbitrary Russell number 

fying the far-field conditions (12a, b, c) is 
The approximate solution of (9) and (10) for infinite Reynolds number satis- 

$ = z  and T = O .  (13) 

This solut,ion fails near the plate surface due to the neglect of diffusion effects. 
I n  the immediate vicinity of the plate the diffusion of vorticity and heat are 
essential to a description of the flow. We emphasize this explicitly by expanding 
the vertical scale in the manner 

where e(R,) scales the thickness of the viscous boundary layer and tends to zero 
in the limit as 12, tends to infinity. Another scale €,(Po, RL) characteristic of the 
thermal-diffusion boundary-layer thickness can be defined, but, a t  least for the 
Blasius boundary layer, it is directly related to E(RL) by the expression 

Y = WG,) ,  (14) 

This relation portrays clearly the role of the Prandtl number. In  subsequent 
sections we take the Prandtl number to be of order unity whereby the dis- 
tinction between the two scales is irrelevant. 

Substituting (14) into (9) and (10) yields the boundary-layer vorticity and 
energy equations in the forms 

and 

The new dependent variables are defined by 

and 

and the Russell number P/FL has been introduced for comparison with the results 
of I. The transformations (1s) arise from the matching requirements between the 
boundary layer and external stream (1  3 ) .  Using the parameter representation 

$(x, Z) = e(RL)'€"(x, Y) = E[Y(~)(x, y) + a(RL)Y!(2)(x, t ~ )  + . . .] 
T(x,  Z) = T(x ,  3) = W(X,  y) + A(RL) !P2'(~, Y) + . . ., 

( '8a)  

( 1 8 b )  

R u ~  = RE (19) 

as in I, we see that the inertia-viscous (Blasius) boundary-layer balance with the 
familiar scale .c = Rz* holds for n < 4, in contrast with n = 1 in the non-diffusive 
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case. Diffusion increases the role of buoyancy forces within the boundary layer 
and thereby can significantly alter the structure of the flow field. Recalling that 
pje is of order one, the direct effect of stratification (the last term in (17)) is a t  
most a second-order quantity, and the scale of the diffusion boundary layer 
(eT = (PoR,)-8) is unaffected by the stratification. 

The region of applicability of the non-diffusive approximation is now clear. It 
requires that the Prandtl number be larger than e-l = R i  for the first-order 
boundary-layer analysis when n < Q. For n > Q, the buoyancy and viscous terms 
in (16) must balance leading to the scale 

(20) E = E ! , ~  = (RLRuL)-$ = R-;(ltjI) L '  3 

and the first-order vorticity equation becomes 

The energy equation (17) for the corrresponding scale is 

which shows that, for Praiidtl numbers satisfying the condition 

(n > t) ,  (23) p - Rk27a-1) 
0 -  

the first-order equation is a balance between convection and diffusion. However, 
for Prandtl numbers smaller than that given in (23), the flow is diffusive on this 
scale. For Prandtl numbers greater than the condition (23), the first-order energy 
equation is lion-diffusive on the scale of (ZO), but a diffusion layer does exist 
with a scale smaller than (20). Similarly, one can show that when the Prandtl 
number is larger than R P - l ) ,  n > 1, the boundary-layer flow correct to  first- 
order is described by the non-diffusive solution of Martin & Long ( 1968) and, when 
the Prandtl number is smaller than RZ1, the entire flow is diffusive (eT = O( 1) ) .  
A unified view of these results is given in figure 2 where n is defined by (19) and 
m is defined by the relation 

The first-order flow characteristics are indicated in the respective domains on the 
figure. 

I n  the outer flow where diffusion effects are negligible (at least to second order), 

Po = RE. (24) 

(9) and ( 10) yield 

and T = (Pi@ (9 - 2). (25b)  

These equations are identical to  the outer flow equations in I and, therefore, 
exhibit the same characteristics depending on the magnitude of the Russell 
number. However, since the first-order boundary layer is the Blasius one for 
all n < 4, another scaling of the equations (9) and (10) is required for the parameter 
range 0 < n < 4 as compared to the range 0 < n < 1 for the non-diffusive case. 
The correct intermediate-layer scaling for the diffusive case is the same as in I, 
namely, 
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The matching conditions require that the expansions for the dependent variables 
in the intermediate layer have the form 

h 

$(x,z)  = RiinY(a,9) = R~i~[9+R~1(1-tn)3(~)(a,9)+ . . . I .  

and T ( x , z )  = IZ, tc l+tn)~(l)(a ,?3)+. . .  (0 < n < +). ( 2 7 b )  

(27a) 

-; 1 I I I I I I 
"- 1 - 0 I 3 2 1 ~ 1 

VL 

FIGURE 2 .  A unified representation of the first-order flow characteristics in Prandtl 
number-Russell number space. 

The fuiiction $(l) is determined from the solution of the Helmholtz equation as 
in I ($6)  and 

Pya, 9 )  = (p/e)%) (a, 9) .  (28) 

With these transformations, a uniformly valid first approximation to  (9) and 
(10) is possible for all Russel numbers greater than or equal to zero. The con- 
dition n = & is the critical stratification for the diffusive boundary layer and 
corresponds to a smaller stratification than the case n = 1 which is the critical 
condition for the non-diffusive boundary layer. 
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4. A similarity solution for the case n = 0 

We now consider the particular case when the Russell number is of order unity 
(n = 0). Since the Reynolds number is presumed to be large, the parameter 
e = Rj$ is small, and it is reasonable to seek solutions of equations (16) and (17) 
by means of a perturbation analysis. The boundary-layer variables are expanded 
in a sequence of the form given by (18a, b) .  Similarly, the outer flow variables are 
expressed as 

and 

where the first terms on the right-hand side are known from (13). The functions 
y(RL), a@,), A@,) are part of an asymptotic sequence and are determined by 
matching the two expansions (18) and (29). In this study we carry the expansion 
procedure only to the order indicated in (18) and (29). 

Substituting (18) into (16) and (17) yields the first-order boundary-layer 
equations 

?j?(.X, 2 )  = x + y(R,) $“”(x, 2 )  + . . .) 
T ( x ,  z )  = 0 + y(R,,) T(*)(x, 2 )  + . . .) 

(29a) 

(29b) 

and 

Introducing the variables 

the above equations reduce to the familiar similarity forms 

and 

The appropriate boundary conditions are 

fl(0) = f i ( O )  = h,(oo) = 0 and f;(oo) = hl(0) = 1. (32c) 

Note that the first-order problem depends only on one parameter, the Prandtl 
number. The solutions forf,and h,are known (cf. Schlichting 1968, pp. 126, 280). 
Using the properties of these solutions, we find the matching conditions 

y(RL) = E = RE* and -yW(z, 0) = - 1.730~4 (x > 0). (33) 

Consequently, is given by the solution of the Helmholtz equation (see I, 5 6) 
and T(l) obeys an equation analogous to (28). 

Since the displacement thickness in the downstream wake is unknown, we 
assume that the outer flow can be calculated as if the plate were semi-infinite. 
The solution for @l) (I, $6) shows that, for a semi-infinite plate, the induced 
horizontal velocity vanishes as z tends to zero. Within this approximation, there 
is no coupling between $(l) andyP@) and the gauge function a(R,) is undetermined. 
However, examining the relation for the temperature, we see that 

T(”(s, 0) = (/?/O)@’)(z, 0) = - 1*730(/?/O)& (34) 
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so that there is a coupling between the outer flow and the second-order boundary 
layer via the temperature field. The coupling is a direct consequence of the diffu- 
sion of heat. This requires that A(R,) = e and, by substituting the respective 
expansions into the boundary-layer equations, one finds that a(R,) = e as well. 

By virtue of the above results, the second-order boundary-layer equations have 
the form 

~ ~ ( x , ~ , ~ I ~ ( l ) ) - ~ ] ~ r ; ~ + ~ ( ~ , ? l , l r ( ~ ) ) Y ~ ~ + ( O I P ) R u r  a 2  5?$? = 0 ( 3 5 a )  

( 3 5 h )  

?!J 

and 

with boundary conditions 

[ ~ ( x ,  y, ~ ( 1 ) )  - - - f“(2) 1 + L(x,  y, yczl )  
Po aY2 a21 - cpp, Y y  = 0, 

w y x ,  0) = yPf’(x, 0) = Y‘k2’(x, co) = Y;;(x, CO) = !P)( .r ,  0) = 0 } ( 3 5 4  
and [17(2) (~ ,  CO) = - ( P / 8 ) 1 * 7 3 0 ~ 2 ,  

where the Russell number has been included to indicate explicitly its role, but its 
order of magnitude is assumed to  be unity. Similarity forms are possible for these 
equations also if we write 

~ ( 2 )  = xf,(r) and 5%) = x4h2(r). ( 3 6 )  

( 37 4 

( 3 7 6 )  

The equations for f 2  and h, are given by 

2.G + fl fi -fX + 2f; f 2  = - (OIP) w. [7h1 + J:p’ h, 4 . 
2h;+Po{f,%-f&+ 2f2h;f = PO(B/O) ()iff; -f1L 

subject to the conditions 

f2(0)  = f h ( O )  =fh(co) = h2(0) = 0 and h,(co) = - (/3/8) (1.730). (37c )  

The first equation has been integrated once to reduce it to  a third-order equation. 
The right-hand sides are known from the first-order solution ( 3 2 )  and comprise 
the primary forcing functions for the second-order boundary layer. A one-way 
coupling exists between ( 3 2 )  and ( 3 7 )  which proceeds from the first-order momen- 
tum equation ( 3 2 a )  to  the second-order energy equation ( 3 7 6 ) .  Furthermore, all 
equations except ( 3 2 a )  are linear. The combination of these facts simplifies 
considerably t h e  numerical solution of the above equations. 

Before discussing the numerical solutions to  the above equations, it is worth 
pointing out that  the boundary-layer expansion for the parameter range 
0 < n < 8 has the form 

$(x ,z) = RiI [‘P(x:, y) + Rft--S Y(2)(x, y) + . . .], 
T ( x ,  x )  = m ( x ,  y) +R;-W(2)(2-, y) + .... 

( 3 8 4  

( 3 8 b )  and 

The equations for Yc2) and 5?(2) are identical to (35a, b )  except that  the term 
multiplied by the parameter PIS in the energy equation (35  b and 37 b )  does not 
appear. Thus, the solution of (37a) yields the second-order velocity field for the 
entire range 0 < n < $. Furthermore, comparison of the expansions ( 2 7 )  and 
( 3 8 )  shows that the second-order boundary-layer stream function Y(2) coiitainiiig 
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the effect of buoyancy in the boundary layer is more significant than the correc- 
tion due to  the displacement effect on the outer flow for n > Q .  For the non- 
diffusive case, this occurred for n > Q. 

The above analysis can be shown to reduce to the non-diffusive case discussed 
in ( I )  by considering the limit of (32 )  and (37 )  as the Prandtl number becomes 
large. When the Prandtl number is large, the first-order temperature field h, 
decays exponentially to  zero in a thermal boundary which is of order Pi* times 
the scale of the velocity boundary layer. The forcing term on the right-hand side 
of ( 3 7 a )  then vanishes, and fi vanishes as well since it satisfies a homogeneous 
equation with homogeneous boundary conditions. Thus, noting that hi and h,“ are 
zero outside a very thin thermal layer near the wall, the solution of (37b)  is 

hz(7) = (Pi@ (fl(7) - 7)-  

@(x, Z) = Ri4 [d fl(q) + Rz-4 ~ ( 0 )  + Rn-l x$f3(q) + . . .I, 

( 3 9 )  

The expansion for the stream function must then take the form 

(40) 

and f3  is identical with the function noted asfz in I (S7 ,  equations (61 )  and ( 6 2 ) ) .  
Consequently, the difficulty encountered there (see I ,  equation ( 6 3 ) )  appears in 
the diffusive solutions also, for an extension of the preceding analysis (Po N O(1)) 
to  the next higher-order term in the boundary-layer expansion would result in a 
vorticity equation containing a non-zero forcing term a t  the edge of the boundary 
layer. This difficulty may be peculiar to the geometry of the problem, since, as 
shown in I, the boundary-layer solution is valid only for a plate of finite length. 

5. Numerical results 
Equations (32 )  and ( 3 7 )  were integrated numerically using Hamming’s modi- 

fied predictor-corrector method for the solution of general initial value problems 
(cf. Ralston & Wilf 1960, pp. 95-109). The integration was accomplished by 
transforming (32 a )  to an equivalent initial-value problem (cf. Rosenhead 1963, 
p. 223),  solving for f,, and then solving (32b) ,  ( 3 7 a ) ,  and (37b)  successively in that 
order. A maximum error bound of 1 0-4 was imposed in the numerical approxima- 
tion. If the absolute error exceeded the specified bound, the integration step-size 
was halved. Numerical solutions were obtained for a range of each of the three 
parameters Ru,, Po, andP/B in order to  determine their individual influence on the 
properties of the boundary layer. 

A measure of the effect of stratification on the boundary layer is obtained by 
evaluating its influence on the shear and heat transfer at the plate surface. 
Using the previous results, the following expressions for the skin-friction and 
heat-transfer coefficients can be derived: 
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where Rs, is the Reynolds number based on the dimensional length x1 measured 
from the leading edge of the plate, and q2(0) is defined by the relation 

= U O )  +Pi@. (43) 

The symbols 70 and qo denote the shear and heat flux, respectively, at  the plate 
surface. Stratification and buoyancy have an effect only in the second-order 
terms. The second-order temperature field was evaluated only for the case n = 0, 
but the velocity field is computed for the range 0 d n < i. 

10 I I I I I l l l l  I l 1 1 1 1 1 ~  - 

Ru2 

FIGURE 3 
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FIGURE 4 

FIGURE 3. The variation of the second-order shear and heat transfer with the Russell 
number. -, Po = 1.0; - - -, Po = 0.1. 

FIGURE 4. The variation of the second-order shear and heat transfer with the Prandtl 
number (RUL = 1.0). -, /?/S = - 1 ;  ---, P / O  = 1. 

The results show that the Russell number has a very significant effect on the 
structure of the boundary layer. Figure 3 exhibits the influence of RuL on the 
skin-friction and heat transfer for both a heated and cooled wall. The second- 
order contribution to the shear changes profoundly when the Russell number is of 
order unity or larger. When the boundary is heated relative to the external stream, 
the skin-friction increases as the Russell number increases and vice versa for a 
cooled boundary. stratification then acts to prevent separation on heated 
boundaries and promotes separation, at least for large Russell numbers, on cooled 
boundaries. 

Figure 4 portrays the influence of the Prandtl number on the boundary-layer 
properties for a fixed Russell number and wall to free-stream temperature ratio. 
The Prandtl numer has a very strong effect on the shear at  the boundary. This is 
attributable to the fact that the thermal boundary-layer thickness and the first- 
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order temperature field depend strongly on the Prandtl number and, therefore, 
affect the second-order velocity field through the right-hand side of (37a). 

12.0 

10.0 (a) 

-2.0 -1.0 0 1.0 
hi (r ) 

FIGURE 5. The effect of the Russell and Prandtl numbers on the boundary-layer profiles: 
(a)  horizontal velocity, ( b )  vertical velocity, and (c) temperature. /3/S = 1. - ,Po = 1.0; 
- - -, Po = 0.1. 

Representative second-order horizontal and vertical velocity profiles and 
temperature profiles are shown in figure 5. The total velocity and temperature 
in the boundary layer can be computed from the relations 

(44) 

(45) 

and (46) 

w = -IR* (f - 7 f i ) [  f 2  - $76 (0 < n < g), 2 z1 1 

The figure clearly shows that buoyancy (RuL) and diffusion (Po) have a strong 
influence on the velocity profile, especially for large Russell numbers and small 
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Prandtl numbers. Since the second-order contribution grows with distance from 
the leading edge, these effects may be quite pronounced near the trailing edge of 
the plate. Also, when the Russell number is large (n close to  i), the mean velocity 
profile is significantly different from the Blasius profile. Stratification, therefore, 

Tli:dTo 
FIGURE 6 
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9.0 
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I \  

- 1.0 0 1.0 2.0 

f h )  
FIGURE 7 ( a )  

-2.0 - 1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 - 
(fi - trfJ 

FIGURE 7 ( b )  

0 1 .0 2.0 

hdr) 
PIGUILE 7 ( c )  

FIGURE 6. The second-order shear and heat transfer as a function of the wall-to-free-stream 
temperature ratio: (RUL = 1.0, /3 = 1.0). -, Po = 1.0; - - -, Po = 0.1. 

FIGURE 7. The effect of the wall-to-free-stream temperature ratio on the boundary-layer 
profiles. (a )  Horizontal velocity: RUL = 1.0; - ,Po = 1.0; - - -, Po = 0.1. ( b )  Vertical velocity: 
Rut = 2.0, Po = 1.0. (c) Temperature: RUL = 1.0, Po = 1.0. 
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can have an important effect on the stability of a boundary layer through its 
modification of the mean profile as well as through the effect of buoyancy on the 
velocity perturbations superimposed on the mean flow. 

The wall to free-stream temperature ratio also plays a role in determining the 
characteristics of the stratified boundary layer. I ts  importance is depicted in 
figures 6 and 7 which contain results for a fixed stratification (POL = 1) and fixed 
Russell number. The function q2(0) is singular a t  T,/T, = 1 because the parameter 

in (37 b, c) goes to infinity as T, approaches To. This is a consequence of the 
temperature scaling expressed in (6). The shear is seen to increase rapidly as the 
wall is heated. 

6.  Summary 
I n  summary, the combined effect of thermal stratification and buoyancy on a 

horizontal boundary layer is greatest when the wall is heated and the Prandtl 
number is small. The Prandtl number is particularly important since it deter- 
mines the vertical scale (the thickness of the thermal boundary layer) over which 
buoyancy forces can act. Also, stratification can either enhance or impede 
separation depending on the relative temperature of the boundary and free- 
stream and the magnitude of the Froude number. 

Diffusion has a very significant effect in that it serves to emphasize the im- 
portance of the buoyancy term by coupling the velocity and thermal fields. This 
is of primary importance when the Froude number is small (or large Russell 
number) which indicates that diffusion may considerably alter the structure of 
the upstream boundary layer studied by Martin & Long (1968) and Pao (1968), 
especially in the vicinity of the trailing edge of a plate of finite length. Further- 
more, since the diffusion boundary layer always grows from the leading edge, a 
downstream momentum wake arising from the resultant density variation should 
exist even in the case when the viscous boundary layer grows in the upstream 
direction. 

The author acknowledges the many helpful discussions with Professors 
R. E. Kelly and A. F. Charwat during the course of this investigation. The research 
was supported by the National Science Foundation under Grant GK-4213 and 
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Several generalizations of theorems of the types originally stated by Helmholtz 
concerning the dissipation of energy in slow viscous flow have been given recently 
by Keller, Rubenfeld & Molyneux (1967). These generalizations included cases in 
which the fluid contains one or more solid bodies and drops of another liquid 
assuming the drops do not change shape. Some further extensions are given 
herein which allow for drops which may be deformed by the flow and include the 
effect of surface tension. The admissible boundary conditions have also been 
extended and particular theorems applicable to infinite domains, spatially 
periodic flows and to flows in infinite cylindrical pipes are derived. Uniqueness 
theorems are also proved. 

1. Introduction 
The history of extremum principles for slow viscous flow (Stokes flow) is 

given briefly by Keller et al. (1967) and they prove several theorems which 
include and extend previous results. These theorems establish upper and lower 
bounds for the excess dissipation rate which is defined to be the rate of energy 
dissipation in the fluid minus twice the power of the external body forces and 
given surface tractions. One of the principal generalizations introduced was to 
include suspended solid particles and drops of another liquid whose motion is not 
known in advance. However, the shapes of the drops were assumed to be constant 
during the motion. 

In  the present paper it is shown that if minus twice the power delivered by 
surface tension is included in the definition of the excess dissipation rate, that 
minimum and maximum principles can be derived for suspensions containing 
deformable drops as well as rigid particles. 

The motivation for the present paper stems from a study of capillary blood 
flow in which the red blood cells may be represented by a line of flexible particles 
suspended in viscous flow in a tube. Spatially periodic flows are of interest for 
this application and the extremum principles have also been appropriately 
specialized for this purpose. Simplifications in the specification of the problem 
are possible, namely, it is sufficient to specify certain integral quantities such as 
the discharge rather than pointwise data such as velocity on the boundaries of the 
typical periodic cell. These results can be applied to uniform flows in cylindrical 
pipes also. 
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Specific theorems are proved for infinite domains assuming body forces are 
conservative. It is shown that the rate of decrease of the velocity at  infinity can 
be predicted rather than assumed and this allows a more general statement of 
uniqueness and extremum principles. 

All of the theorems proved below, like those already in the literature, consider 
that the configurations of the droplets and particles are known at the instant 
that the fluid motion is to be found. 

2. Statement of the problem 
Consider a domain V which contains a viscous fluid in which there are NL 

liquid drops or bubbles and NK rigid, solid particles. The boundary S of V is 
assumed not to intersect any of the suspended drops or particles. The boundary 
conditions in the sense of prescribed velocity and traction components are 
assumed to be specified only on S which will be subdivided into S,, S,, X,, S, 
according to the particular components specified. 

Let the domain V be subdivided into VTo occupied by the suspending fluid, 
Vg)  (Z = 1, ..., NL) occupied by the fluid drops, and V g )  (k = 1, ..., NK)  occupied 
by the solid particles. Let So, AS$) and Sg)  denote the surfaces of V,, Vg) and V g )  
respectively. Then So is the sum of S, S'j? (I = 1, . . ., NL) and Sg) ( k  = 1, . . ., NK).  
Let n denote the normal to So directed outward from V,. 

Each of the fluids in V, and V'f (I = 1, . . . , N,) is assumed to be a uniform, 
incompressible, Newtonian fluid but the viscosity p ( x )  may be different in each of 
these domains. Let a@) (Z = 1, . . . , NL) denote the surface tension in !.Sg); cr@) may 
be different for each Sg). 

It is convenient to define a single velocity field u(x)  for the entire domain V .  
The motions of the drops and solid particles are not known in advance but are to 
be found as part of the solution. The requirement of zero relative velocity of the 
fluids and solids on the two sides of each Sg' and Sg) is met by stipulating that 
u(x) be continuous in V .  Within each solid particle, the velocity u(x) is defined to 
be that of the rigid body motion consistent with the fluid velocity on its boundary. 

Let f(x) denote the body force per unit volume defined throughout V .  Let 
p ( x )  and rij(x) denote the pressure and stress tensor which are defined only in the 
fluid domains V, and Vg) (I = 1, . . . , NL). The pressure and stress are required to be 
continuous except across the surfaces Sg) of the drops where the difference of 
the value outside minus the value inside the drop will be denoted by Ap and 
ArLj respectively. 

Let j(z), t(z), m(x) be three unit vectors which are specified at each point of 
S as part of the boundary conditions of the problem. The j, t, m must be mutually 
orthogonal, but may be otherwise arbitrarily oriented a t  each point. 

The problem is to find u(x) in V satisfying the following equations and 
boundary conditions : 

ui,i = 0, x in V ;  (2.1) 

rii , j+fi  = 0, x in V, and T'x) (I = 1, ..., N,); ( 2 . 2 )  

ui = g,(x), x on Sl; (2.3) 
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ui.ji= h(x), u,ti = bfx), x on S,; 

qjnjmi=P(x), x on S,; 

u& = h ( x ) ,  x on S3; 

rijnjli = a(x),  rijnjrnsi = P(x), x on S3; 

7Ljnj= y,(x), x on X4; 

, x on Sg’ (I = 1, ..., N,); 

Arijnj - Arqlnnqn,ni = 0, x on Sg’ ( 1  = 1, . . . , NL) ; 

0 0 

7.. = -pa..+ 2peij, x in T’, and V:) (I = 1 ,  ..., NI,); 

egg= ~ ( U ~ , ~ + U $ ,  i ) ,  x in V ;  

e i j  = 0, x in V g )  ( I c  = 1, ..., N K ) ;  

13 13 
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( 2 . 4 ~ )  

(2.4b) 

(2.5a) 

(2.5b) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where eijk is the alternating tensor and Sijis the Kronecker delta. R, and R, denote 
the two principal radii of curvature of Si’ reckoned positive when they extend 
into the drop. The functions CL, p ,  y, g, h, b are given as part of the boundary 
conditions. 

Equations (2.1) and (2.2) are the equations of continuity and motion for the 
Stokes flow in the fluid domains. 

The boundary conditions (2.3), (2.4a),  (2.5a) and (2.6) specify 3, 2, 1 or 0 
components of the velocity on S,, S,, X,, S,  respectively. In each case, a sufficient 
number of traction components are also specified by (2.4b), (2.5b) and (2.6) to 
make the solution unique, as will be shown in the derivations below. 

Equation (2.7) equates the difference of the normal components of the tractions 
on the two sides of S’J? t o  the effect of surface tension 8. Equation (2.8) 
states that the tangential component of the surface traction is continuous 
across Sg. 

The equations of motion of the solid particles are expressed by (2.9) and 
(2.10). 

Equations (2.11) and (2.12) define the stress tensor rij and eij for a Newtonian 
fluid and (2.13) ensures that the motion within Xg) is that of a rigid body. 

Only solutions u(x)  which are continuous throughout V will be considered; 
derivatives of u may be discontinuous on SE) ( I  = 1, , . . , N,) and on Sg’ (k = 1, 

The domain V is considered to be finite until $ 6  where infinite domains are 
..., Ng).  

specifically considered. Spatially periodic flows are treated in $7. 
34 F L M  42 
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3. A minimum principle 

It is defined bv 
Let the rate of dissipation of energy into heat by viscosity in V be denoted D[u] .  

The excess dissipation rate D J u ]  is defined to be the rate of viscous energy 
dissipation minus twice the power of the external body forces, the given surface 
traction components and the surface tensions : 

where A0 is the time rate of change of the area A(') of Sg) (1 = 1, ..., NL). The 
product ( - dJA(0) is the rate at  which surface tension does work on the adjacent 
fluids and is also the rate at which the surface energy dOA0 decreases. At any 
time, is given by (cf. Landau & Lifshitz 1959) 

The minus sign in (3.3) is due to the fact that n is the normal taken outward 
from V, which is inward to VE.  

THEOREM 1. A minimum principle. Let u(x)  be a continuous solution of a 
Stokes flow problem satisfying (2.1)-(2.13). Let ii(x) be any continuous velocity 
field which is  piecewise continuously differentiable and satisfies (2.1), (2.3), (2.4a), 

(3.4) 
(2.5a), and (2.13). Then 

D,[Ul D,[iil 

The equality holds only if 5 = u or fi = u + u0 where u0 is a rigid body motion. 
(Note that the configurations of the droplets and solid particles are identical 

for both flows u and ii at the instant considered.) 
Proof. Let ii = u+ii. Then from (3.1) 

D[ii] = D [ u  + 51 = D[u]  + D[5]  + 4peii[u]e,[ii]dV 

1=1 y ( l )  

Lo 
+ 1 4peij[u]eii[iild~. (3.5) 

In  (3.5), 2peij[u] may be replaced by T,~[u]  because the trace of eij[ii] is zero. Also, 
eij[ii] may be replaced by iii,j because qj[u] is symmetric. Then using (2.2), 
(3.5) becomes 

L 

D[ii] = D[U]+D[G]+ [ I. ( 2 ( a j ~ i 7 i j [ u ] ) + 2 f ; ~ i ) d V  
J 1'3 
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Now replacing u in (3 .2)  by ii and using (3 .6 )  and Gauss's theorem, yields (3 .7 ) ,  
below. In  applying Gauss's theorem the surfaces on which the derivatives of ii 
are discontinuous give no net contributions. The contributions from the two 
sides cancel because ii and ii are continuous. Thus 

- 2 &(Ui + Ciii) d v - 2 (Ui + Ci) m,/?dX sy IS" 
n n 

where A0 is given by (3 .3 )  and J ( 0  is the rate of change of A0 under the velocity ii. 
Since (3 .3 )  is linear in u, J ( 0  is given by (3 .3)  with u replaced by ii. In  (3 .7 )  the 
superscripts in 7::) [u] and 4) [u] have been added to denote the stress tensors on 
the two sides of the surfaces Sg) facing V, and Vg) respectively. The difference 
(7:;) [u]-T$) [u]) is A7i, as used in (2 .7)  and (2 .8 ) .  

Since u and 6 both satisfy (2 .3 ) ,  ( 2 . 4 ~ )  and 2 .5u) ,  the components of ii corre- 
sponding to the specified components of u on S are zero. Further, ~ ~ ~ [ u ]  satisfies 
(2 .4b ) ,  (2 .5b )  and (2 .6) .  As a result, the surface integrals in (3 .7)  over S,, X,, S, 
and S, involving ii all cancel. The surviving terms of (3 .7 )  may be written 

The integrals over F'g) and Sg)  in (3 .8 )  are the rate of work done on the solid 
particles by the body forces fj and surface tractions ~ ~ ~ [ u ]  under the motion a. 
Since ii is a rigid body motion within each V g )  it  has the form 

Gi = .ii'zk)+E. zzm (1.. 2 bk k,,)%, x in V P ,  (3 .9 )  

where f i i c k )  is a constant vector and the angular velocity (+qjkGk,j )  which appears 
in (3 .9 )  is also constant within Vg).  Using (3 .9 ) ,  (2 .9 )  and (2 .10)  it follows that 
the sum of the integrals over V g )  and Sg) is zero in (3 .8 ) .  

The surface integrals over Sg) and the surface tension terms in (3 .8 )  may be 
rewritten using ( 3 . 3 ) ,  (2 .7 )  and (2 .8 )  as 

34-2 
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where GiArijnj has been replaced by GiniAr,,n,n, because the tangential 
component of Arijnjis zero by (2.8). The last integrand in (3.10) is zero by (2.7). 

(3.11) 
Hence (3.8) becomes 

Since D[B] is never negative and is zero only if B = 0 or if B is a rigid body motion, 
theorem 1 follows. 

If the boundary conditions are such that no rigid body motion is possible satis- 
fying (2.3), (2.4a)and (2.5a) whenthegivenfunctionsg, h, b arereplaced byzeros, 
then B cannot be a rigid body motion. In  this case D,[ii] = DJu] only if ii = u. 
This is the case, for example, if S, contains at  least three non-colinear points. 

D,[O] = DJU] +D[B]. 

4. A maximum principle 
A maximum principle for the Stokes flow problem stated in 3 2 can be obtained 

in terms of a functional H[rij] of the stress tensor rij. This functional will be 
called the excess power. It is defined as twice the power delivered by surface 
tractions on S acting through the given velocity components g, b,  h minus the 
dissipation expressed in terms of the stress: 

When rijis the stress tensor corresponding to a solution u of (2.1)-(2.13)) then 

H[Tij] = D,[u]. (4.2) 

To prove (4.2)) consider first that for a solution rij[u], the volume integrals over 
V, and 72) in (4.1) become equal to those in (3.1) and add up to D[u]. Next, by use 
of the boundary conditions (2.3)-(2.6) the surface integrals over Sl) 8, and 8, in 
(4.1) may be written: 

(4.3) 

n n n 

(hjirijnj+ btirijnj)dS = uirijn,dS- J uimipdS, J s, J s2 S, 
(4.4) 

Using (4.3)-(4.5) in (4.1) and adding and subtracting twice the integral of 
uirijni over S, gives 
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The first integral in (4.6) is the rate at which surface tractions on S do work on the 
fluid in V .  This integral may be evaluated by expressing conservation of energy 
in the form 

LVL 

u , ~ ~ ~ n ~ d ~ +  f,u,dV = D[u] + c c+)A(l). (4.7) 
ss sv 1=1 

Equation (4.7) is not an independent postulate here since it may be shown to 
follow from (2.1) to (2.13). Using (4.7) in (4.6) to eliminate the integral of ~ ~ 7 ~ ~ n ~  
over S gives H[rij] in a form which is identical to (3.2) so (4.2) is proved. 

THEOREM 2 .  A maximum principle. Let u(x) be a continuous solution of a 
Stokes $ow problem satisfying (2.1)-(2.13). Let Tij be any stress tensor defined in V, 
and VF which is piecewise continuous and piecewise continuously differentiable and 
satisjies (2.2), (2 .4b ) ,  (2.5b), (2.6), (2.7), (2.8), (2.9) and (2.10); on surfaces of 
discontinuity of;ijthe traction n;Tij  is required to be continuous where n; is the normal 
to the surface of discontinuity of TLj (other than the surfaces S? of the drops). Then 

DJUI 2 q j 1 .  (4-8) 

The equality in (4.8) holds only if Tij = rijor Tij = ~ ~ ~ + p ~ c Y ~ ~ w h e r e p ,  is a constant. 
Proof. Let ;iij = rij + Ti,, where rij is the stress tensor corresponding to the solution 

u. In (4.8), H[?&] is given by (4.1) with rijreplaced by Tij: 
r 

Thgjntegral over V, in (4.9) is 

(4.9) 

(4.10) 

An expansion similar to (4.10) can be written for the integrals over V7(rf) in (4.9).  
Using these expansions in (4.9) and comparing to (4.1) gives 

H[Tij] = H[Tij] - ( - T i j  - +TkkC&)ZdV 
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n n 

+ 2J  gLTijnjdS+ 2J (hjifiinj+ btiTiini)dS 
.TI s* 

(4 .11)  

In  (4.11), (2.11) has been used to replace T~~ in terms of eii .  The integral over V, 
containing eij in (4.1 1) may be written 

n n 

In  deriving (4.12), account is taken of the facts that uiis an incompressible flow 
and that aj(Tij) = 0, since both rijand ?&satisfy (2.2). The surfaces of discontinuity 
of TLjwould also enter in (4.12) but since Tijn; and rip; are both continuous across 
such surfaces, the contributions over the two sides of these surfaces cancel. 

A transformation similar to (4.12) yields 

v,z,eii(Tij- $Tkk4.i)dV = - uiTijnidS, (4.13) 

where njis again the normal outward from V,. The surface So in (4.12) is the sum of 
S,, S,, S,, X,, 8%) and Sg) .  When (4.12) and (4.13) are substituted into (4.11), all 
the surface integrals, except those contained in H [ q j ] ,  are found to cancel leaving 

1, SSf) 

(4.14) 

In the reduction of (4.11) to (4.14), the surface integrals over S, which arise are: 

2 I S 2  (hjiT inj + btiTijni) dS - 2 

The sum of the integrals in (4.15) is zero because u satisfies ( 2 . 4 ~ )  and both .rijand 
Tijsatisfy (2.4 b )  so that Ytjnjmi = 0 on S,. The cancellation of integrals over S,, 8, 
and 8, follows similarly. 
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Surface integrals over 8:) arise from (4.12) and (4.13) which combine in (4.11) 

uihTipj dS, (4.16) 

where hTijis the jump of ?ijacross the surfaces 82, The tangential components of 
ripj  and 7ijnj are continuous across 8%) since both satisfy (2.8). The normal 
components of Tijnj and Tiijnj take the same jump, as prescribed by (2.7). Hence 
ATbjnjis zero and (4.16) vanishes. 

On the surfaces Sg) (k = 1, . . . , NK),  the integrals arising from (4.12) are of the 
form r 

to give terms of the form 

Ly 

(4.17) 

Since ujhas the form (3.9) on 8@ and both rijand cj satisfy (2.9) and (2.10), it 
follows after substitution of (3.9) in (4.17) that (4.17) also vanishes. 

In  (4.14) the volume integrals involving Tij are positive unless Tij is zero or of 
the form po8ijwhere po is a constant. Hence 

m i j 1  < m i j 1  (4.18) 

and the equality holds only if Tij = T~~ or if Tij = rij +p0& Theorem 2 follows from 
(4.18) and (4.2). 

The constant po will be zero if no uniform pressure field can satisfy the stress 
conditions ( 2 . 4 b ) ,  (2 .5b)  and (2.6) when the given a, /3, y are replaced by zeros. 
In this case D,[u] = H[Tiij] only if Tij = rij. This is the case, for example, if S, 
contains at  least one point. 

Theorems 1 and 2 contain the minimum and maximum principles given by 
Keller et al. (1967) as special cases in which the drops are of constant shape, S, is 
absent, and j is coincident with n. 

The theorems 1 and 2 also apply to drops or regions of constant volume of one 
or more immiscible fluids in another fluid where the surface tensions are negligible 
(dl) = 0). Then deformation of drops is to be expected in general. 

5. Uniqueness theorem 
THEOREM 3. Thesolutionuof aStokesJowproblemposed by (2.1)-(2.13) isunique 

to within a rigid body motion and the stress rtjis unique within a uniform pressure. 
Proof. Let u(l) and u(2) be two solutions. Then (3.4) holds with u = uC1) and 

ij = d2) and vice versa so the equality in (3.4) would hold. The first part of theorem 
3 then follows from theorem 1. 

Similarly, let 7:;) and 7:;) be the stresses corresponding to u(l) and d2). Then 
(4.18) holds with rij = 7:;’ and Tij = 7:;) and vice versa so the equality would hold 
in (4.18). The second part of theorem 3 follows from theorem 2. 

The arbitrary rigid body motion and the arbitrary uniform pressure implied in 
theorem 3 will be zero under the same conditions as discussed below (3.11) and 
(4.18). 

Theorems 1 , 2  and 3 can be applied to a single homogeneous fluid by deleting 
all references to suspended drops and particles. 
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The theorems also apply if any one, two, or three of the surfaces S,, S,, S,, S, 
are absent. However, every point of S must be a point of one of the surfaces XI, 
S,, S,, S,. The boundary conditions on S which are permitted by (2.3)-(2.6) 
specify just enough components of velocity and traction to make the solution 
unique. This requires that sufficient components of velocity and/or traction be 
specified at  each point of S that if Gi and Tij are differences between two fields 
which both satisfy the boundary conditions on S, then the work rate iiiTijnj is zero 
a t  every point of S. 

6. Infinite domains 
In  the theorems 1 , 2  and 3, the domain V is assumed to be finite. The theorems 

can be applied to infinite domains if it is assumed that the velocity and stress 
fields decay fast enough so that the surface integrals which arise over a sphere at 
infinity vanish. The situation is similar to that of linear elastostatics for exterior 
domains treated by Gurtin & Sternberg (1961). As they point out, the rate a t  
which a solution approaches specified values a t  infinity is an item of information 
which one would legitimately expect to infer from the solution, rather than a 
condition to be imposed on the solution in advance. A uniqueness theorem 
resting on an assumption of the rate of decay at infinity leaves in doubt the 
existence of solutions which approach the specified values a t  infinity less rapidly. 

In the present section, generalizations of theorems 1, 2 and 3 are proved for 
infinite domains without assumptions of the rates of decay of the solutions a t  
infinity. It is also shown that the comparison flows for the various theorems must 
be subject to a specification of the rate of dilation of the internal boundaries. 

The nomenclature of $ 2  will be used also for infinite domains with the under- 
standing that the region V is now an exterior domain bounded internally hy the 
surface S. The surface S is assumed to consist of a finite number of closed surfaces 
which lie within a finite sphere, r = r, where ro is a constant and r is the distance 
from the origin. The surface 8 is again considered in four parts S,, S,, S,, S, 
according to the boundary conditions specified. It is assumed that the number of 
liquid drops, N,, and the number of solid particles, N,, in suspension in V are 
finite and that they also lie within the sphere r = ro. The suspending fluid occupies 
the region V ,  which is the portion of B not occupied by solid particles or liquid 
drops. The surface So of V, consists of XI, S,, S,, S,, Sg) (I = 1, . . ., A;) and 8%) 

The only boundary condition at  infinity which will be considered is that the 
( k  = 1, ..., NK). 

velocity approach a constant vector uniformly a t  infinity, i.e. 

where U, is a given constant vector. Whenever the boundary condition (6.1) is 
imposed, a system of axes translating with velocity may be used so that the 
condition (6.1) is replaced by 

lim ui = 0. (6.2) 
r+ m 

The condition (6.2) will be assumed to apply in all cases below. 
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An additional restriction that will be imposed for infinite domains is that the 
body force within V, be conservative, meaning there exists a single valued 
potential, a(x), such that 

.f, = - ,1, x in V,. (6.3) 

The boundary conditions on the interior boundaries XI, S,, S,, S, are the same 
as  for finite domains detailed by (2 .3 ) - (2 .6 ) .  It will be shown that for an infinite 
domain the total rate of expansion, 8*, must also be specified for uniqueness of the 
solution. Hence the statement of the problem will be augmented by the require- 
ment 

- s \ u f n 3 d S  = P,  (6.4) 

where f3* may be a given function of time in general. 
A complete statement of the problem considered in this section is to find u(x) 

in the infinite domain, V ,  described above satisfying (2 .1) - (2 .13) )  (6 .2 ) ,  (6 .3 )  and 
(6.4). 

The dissipation rate D[u] is again defined by (3 .1 )  with the understanding that 
the integral over V, is now interpreted as the limit 

1 2,u(eij[ul)2dv = lim 1 2p(e i j [u l )2dv .  (6 .5)  
VO p - t m  T7.p 

where V,, is the portion of V, within a sphere r = p. 
The excess dissipation rate D,*[u] for an infinite domain V is defined by 

This definition (6.6) differs from (3 .2 )  in that the rate of work done by body forces 
in V, has been replaced in (6.6) by the rate of change of potential energy due to the 
motion of the boundary 8, of V,. If the domain & were finite, this potential 
energy term would be equal to the integral of fiui over V, by Gauss's theorem, 
(2 .1 )  and (6 .3) .  Then (6.6) would be equivalent to (3 .2 ) .  

The counterpart of theorem 1 for infinite domains requires a representation 
theorem for u, which is developed first below. 

The velocity field U ( X )  is assumed to be continuous and to possess continuous 
derivatives up to second order within each of the domains V,, Vgl ( I  = 1 ,  . .., NL). 
At the boundaries of Vg) and V g )  the velocity u ( x )  is required to be continuous 
but its derivatives may be discontinuous. Then as shown in the appendix, uimust 
be analytic within V, and Vg). 

Equations (2 .2 )  and (2 .11)  may be combined to give the usual equations of 
motion within V, and Vg). 

(6.7) 
1 1 

P P  
~i , j . j  - -I, ,i + - f. = 0. 
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Taking (a/axi)a/ax, of (6.7) and using (6.3) and (2.1) yields 

p,ii /c+Q,ii ,;  = 0. (6.8) 

i.e. v4ui = 0. (6.9) 

Taking (8/t3xl) a j a q  of (6.7) and using (6.8) shows that the velocity is biharmonic, 

A representation of biharmonic functions in an exterior domain has been 
developed by Gurtin & Sternberg (1961). A region $2 is defined as a deleted 
neighbourhood of infinity characterized by 

ro < r < oc), (6.10) 

where ro is a constant. For such a region they prove 

THEOREM 4. Let F(r ,  1Y,q5) be biharmonic in 9, where ( r ,  O,q5) are spherical polar 

(a)  F ( r ,  0, q5) admits the representation 

co-ordinates. Then 

m 

F(r ,  8, #) = C h@)(r, 8,  $) +r2 5 Hck)(r, 8, $), (6.11) 

where hck)(r, 8,q5) and H o ( r ,  8, #) are solid harmonics of degree k and both injnite 
series are uniformly convergent in every closed subregion of 9; 

( b )  F(r ,  0,$) in 9 has partial derivatives of all orders, series representations of 
which may be obtained by performing the corresponding termwise differentiations of 
(6.1 l), the resulting expansions being also uniformly convergent in every closed 
subregion of 9; 

( c )  i f  n i s  aJixed integer, the three statements 

(i) F(r ,  0, $) = 0(rn- l ) ,  (6.12) 

(ii) F(r ,  0, q5) = o(rn),  (6.13) 

(iii) W ( r ,  0,#)  = H(k--2)(r, 8 ,# )  = O for k 3 n (6.14) 

are equivalent and imply 

(iv) F,i(r,8,q5) = O(rn-2). (6.15) 

The orders of magnitude P = O(rn) and F = o(rn) indicate, as usual, that Ir-nFl 
remains bounded uniformly and I r-" F I approaches zero uniformly, respectively, 
asr-+co. 

The following theorem follows from theorem 4. 

THEOREM 5. Suppose ui(x), eJx) ,  ~ ~ ~ ( 2 )  and& in 9 satisfy (2.1), (2.2), (2.11), 
(2.12) and (6.3). Then i f  n i s  ajixed integer 

u, (x)  = o(rn) 
implies 

(i) ui(x) = O(rn-l) ,  

(ii) eij= O(rn-2), 

(iii) p ,i + ,i = O(m-3).  

(6.16) 

(6.17) 

(6.18) 

(6.19) 
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Proqf. Since ui(x) is biharmonic, theorem 4 applies with F replaced by ui. Then 
(6.16), (6.13) and (6.1.2) imply (6.17). The definition (2.12) and (6.15) yield (6.18). 
Substituting (2.12), (2.11) and (6.3) into (2.2) and applying (6.15) again gives 
(6.19). 

THEOREM 6.  A minimum principle for infinite domains. Let V be an exterior 
domain containing NL liquid particles, NK solid particles and internal boundaries S 
within a Jinite sphere F = ro- Let u(x) be a continuous solution of the Stokes f i w  
problem satisfying (2.1)-(2.13), (6.2), (6.3) and (6.4). Let 5 (x)  be any  continuous 
velocity field which i s  piecewise continuously diflerentiable and satisfies (2.1),  
(2.3), (2 .4a) ,  (2.5a),  (2.13), (6.4)and 

Ui = O(r-1) as r -fa. (6.20) 

Then  m u 1  G X P I ,  (6.21) 

where @[u] i s  defined by (6.6). The equality in (6.21) holds only i f i i  = u. 
Proof. Let D = u+5. From (3.1) the forms (3.5) and (3.6) follow as before with 

the understanding that the integrals over V, are interpreted in the sense of (6.5). 
Replacing u by ii in (6.6) and using (3.6) and Gauss’s theorem yields (6.22) 
below. In applying Gauss’s theorem to V, in (3.6), the surface of V, is considered to 
consist of So plus Sp where Sp is the surface of a sphere r = p, p -+ 00. Then 

1VL 
( u i + c i ) y i d S + 2  2 ao(Ao+A@)),  (6.22) 

where the notation is the same as in (3.7). Since u and ii both satisfy (2.3), 
( 2 . 4 ~ )  and ( 2 . 5 ~ )  and 7ij satisfies (2.4b), (2.5b) and (2.6), the surface integrals 
over S;, S,, 8, and S, involving 5 and 7ija11 cancel in (6.22). The surviving terms 
may be written 

- 2Ss. 1=1 

P P 

(6.23) 
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Equation (6.23) is the counterpart of (3.8). The terms in (6.23) which are summed 
over 1 and k pertain to the liquid and solid particles and add up to zero as shown 
below (3.8). Applying Gauss's theorem to the region V, considered bounded by So 
internally and Sf externally and using (6.3) and (2.1) yields 

Substituting (6.24) in (6.23) gives 
r 

Dt[ii] = DZ[U] +D[ii] + 2 Si(Tjj[U] - GjjQ)njdS.  J s p  

Using (2.11) the integral over S, in (6.25) is 

- (p + SZ)CinidS. J sp 

(6.25) 

(6.26) 

Theorem 5 applies to ui with n = 0 by virtue of (6.2). Hence eij[u] = 0(r2) by 
(6.18). Further, Gi = O(r-1) by (6.20) and (6.17). It follows that the first integral 
on the right of (6.26) is zero in the limit p -fa. 

If the integration of (6.19) is considered along a path lying on the sphere S,, 
it follows that on r = p 

(6.27) 

where p* is a constant and P(r, 8, g5) is a function of order O ( T - ~ ) .  Hence 

P + Q = P* +m7 8, $1, 

( p +  Q)CinidX = p* 2.iiinidS+ F ( p ,  8, $)CinidS. (6.28) 

The first integral on the right of (6.28) is zero since u and ii satisfy (6.4) and the 
second integra.1 is zero in the limit p -+ co. Hence (6.28) and (6.26) are zero and 
theorem 6 followsfrom (6.25). In the present case, ui and?ii cannot differ by arigid 
body motion because of the boundary condition a t  infinity so the equality holds 
in (6.21) only if fi = u. 

A maximum principle for infinite domains corresponding to theorem 2 for 
finite domains can be derived if the excess power is redefined for infinite domains 
as follows 

H * [ T ~ ~ ]  = 2 gir.ijnjdSt 2 is2 (hjirijnj+ bti7ijn,j)dS 

Isp Jsp J:, 

JS, 

+ 2/sahjirijn3dS- 28*p* 

(6.29) 
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The difference between (6.29) and (4.1) is that the term -26*p* has been 
added in (6.29). The total rate of expansion, 8*, defined by (6.4) is a part of the 
given kinematic data and the work done by the pressure and body forces at 
infinity represented by p* is therefore included in the excess power. Hz[rij] is 
defined only when p* exists as defined by 

p* = Jim ( p  + 0) = lim ( -  +rkk + Q). (6.30) 

When rij is the stress tensor corresponding to a solution of (2.1)-(2.13), (6.2), 
(6.3) and (6.4), then 

H*[Tij] = D;[u],  (6.31) 

where D,*[u] is given by (6.6). To prove (6.31), we proceed as in proving (4.2). 
In the present case, (4.3), (4.4) and (4.5) hold also. Using (4.3)-(4.5) in (6.29) and 
subtracting twice the integral of uirijnjover S, gives 

r + m  r+m 

n n 

Instead of (4.7), the conservation of energy now takes the form 

where the integrals over Sp and V are interpreted as the limits for p -f co. Using 
(6.3) and Gauss’s theorem these terms may be written 

The two integrals over S, on the right of (6.34) may be replaced by - 6*p* in view 
of (6.27) and the fact that ui = O(r-l) .  Substituting (6.34) into (6.33) and using 
(6.33) to eliminate the integral over S in (6.32) yields H* [rii] in a form identical 
to (6.6) so (6.31) is proved. 

THEOREM 7. A maximum principle for inJinite domains. Let V be an exterior 
domain containing NL liquid particles, NK solid particles and internal boundaries S 
within a Jinite sphere r = r,,. Let u(x) be a continuow solution of the Stokes flow 
problem satisfying (2.1)-(2.13), (6.2), (6.3), (6.4). Let Tijbe any stress tensordefined 
in V, and Vg’ which is piecewise continuous and piecewise continuously differentiable 
and satisJies (2.2), (2 .4b ) ,  (2.5b), (2.6)-(2.10). On surfaces of discontinuity of 
Tij the traction nlTdj is required to be continuous where nl is the normal to the surface 
of the discontinuity qf Tij. Further, the limit, ji*, defined by (6.30) m w t  exist and 

ri j  - &Tkkaij  = O(+) as r -f 00. (6.35) 
- 
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Then D,*[u] >, H*[Tij]. (6.36) 

The equality in (6.36) holds only if Ti* = rij or T~~ = rij+po8<ii where po is a 
constant. 

Proof. Let 5 = rij+Tij, where r i j  is the stress tensor corresponding to the 
solution u. In (6.36), H*[F{J is given by (6.29) with [7ij] replaced by [7,J andp* 
replaced by p*.  The same steps that were used to convert (4.9) to (4.11) yield 

- 

H*[?ij] = H*[7ij]- 

+ 2J hj,TijnjdS- 28*p*, 
8. 

(6.37) 

where p* = p* -p*. The integral over V, containing eijin (6.37) may be rewritten 
by the same steps as in (4.12) to yield 

r r r 

(6.38) 

The integral over S,, in (6.38) may be written 

The first integral on the right of (6.39) is zero in the limit p+co due to (6.2) and 
(6.35); the second integral is equal to - 28*17*. Substituting (6.39) and (6.38) into 
(6.37) and using the same arguments as used in connexion with (4.14) gives 

H*[Q = H*[Tij] - - +iI,I,8,j)2d v 

(6.40) 

The integrals in (6.40) are positive unless Ttj  is zero or of the form p,, Sij where p, 
is a constant throughout V, and Vf ) .  Hence 

H*[Fij] < H * [ 4  (6.41) 

and the equality holds only if Tij = rij or if Tij = ~ ~ ~ + p ~ 8 ~ ~ .  Theorem 7 follows 
from (6.41) and (6.31). The constant p ,  will be zero under the same conditions 
discussed below (4.18). 
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THEOREM 8. Uniqueness theorem for injinite domains. Let V be an exterior 
domain containing NL liquid particles, N' solid particles and internal boundaries S 
within a Jinite sphere r = ro. Then the solution u of a Stokes Jlow problem posed by 
(2.1)-(2.13), (6.2), (6.3) and (6.4) i s  unique and the stress rij is unique to within a 
uniform pressure. 

Proof. The proof follows from theorems 6 and 7 by the same arguments by 
which theorem 3 follows from theorems 1 and 2. 

I n  theorems 6 , 7  and 8 the requirement that 0* be specified as part of the given 
data may be redundant if sufficient velocity components are specified by 
(2.3)-(2.5) to compute the integral in (6.4). In  this case, the separate requirement 
(6.4) may be deleted. 

The physical significance of specifying 0" is illustrated by the following simple 
problem. 

A hollow spherical cavity of radius ro, centred at  the origin, is surrounded by a 
uniform viscous liquid extending to infinity. Suppose the body forces are zero 
and the internal pressure in the cavity is p,,, a given constant. Find the creeping 
motion of the fluid. 

The solution of this problem is 

U, = (p0 - cl) ~ 1 4 ~ 2 ,  (6.42) 

which is not unique because c1 is an arbitrary constant equal to the pressure at 
infinity which was not specified. 

If the problem is augmented by requiring 0* to be a given value, the solution is 

u, = 6*/4.rrr2, (6.43) 

which is unique. The stress tensor is now also unique. In  effect, specifying 0" 
determines the pressure at infinity. 

7. Spatially periodic flows 
Consider an infinite pipe whose cross-section is variable, but periodic with 

respect to a co-ordinate x1 with periodicity A. The walls of the pipe are fixed and 
rigid and may contain additional internal boundaries provided they are also 
fixed and rigid. Let the remaining space be filled with a viscous liquid containing 
liquid drops and solid particles which are also distributed periodically in xl. 
Body forces fi are assumed to be periodic in x1 also. It is assumed that the velocity 
field of any Stokes flow in the pipe under these conditions is periodic in x1 and 
consists of a series of identical cells. 

Each cell has two identical surfaces, say S, and S, in order of increasing xl, 
spaced h apart. S, and 8, need not be plane, but are chosen to extend entirely 
across the flow and not to intersect any liquid drops or solid particles. The 
remaining surface of the cell, say S,, consists entirely of fixed boundaries. Hence 

ui= 0 on X,. (7.1) 
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Let the volume of a typical flow cell be V with boundary S equal to the sum 
of S,, Sb and 8,. Let V contain NL liquid drops and NK rigid, solid particles. Let 
V,, Vg), V g )  be the parts of V occupied by suspending fluid, liquid drops and solid 
particles respectively with surfaces So, Sg) and Sg'. 

The discharge, Q, through the pipe must be the same for all cross-sections, i.e. 

l sundS = Q all x', (7.2) 

where S' is any cross-section of the flow cell and u, is the component of velocity 
normal to  S'. The discharge Q includes suspending fluid, liquid drops and solid 
particles. The general problem considered is to find U(X) in V satisfying (2.1),  
(2.2), (2.7)-(2.13), (7.1) and (7.2) with Q given. 

Substituting (2.11) in (2.2), it may be seen that since fi and ui are periodic, 
p,i is periodic in x1 and ap/as is identical €or corresponding paths on 8, and S,. 
Then by integrating along S, and S, it follows that any difference of pressures at 
corresponding points of S, and Sb is the same constant, say A p ,  for all pairs of 
corresponding points. A mean pressure gradient, p z ,  is defined by 

Pz = APIA. (7.3) 

The dissipation D[u] in V is given by (3.1). The excess dissipation Dk[uJ for 
the present case is defined by 

where A0 is given by (3.3). 

THEOREM 9. A minimum principle. Let u(x) be a continuous solution of a periodic 
StokesJlowproblem satisfying (2.1), (2.2), (2.7)-(2.13), (7.1) and (7.2). Let ii(x) be 
any continuous periodic velocity field which is  piecewise continuously diflerentiable 
and satisjes (2.1), (2.13), (7.1) and (7.2). Then 

DL[U] < D 3 i ] .  (7.5) 

The equality holds only if u = ii. 

Replacing u by ii in (7.4), using (3.6) and Gauss's theorem yields 
Proof. Let ii = u+ii. Then (3.5) and (3.6) apply in the present case also. 

N L  

- 2  fi(U,[+.ii,)dV+2 c dyA(I)+k@)), (7.6) S v  1=1 

where the notation is the same as in (3.7) except that in (7.6) So is the sum of 
S,, S,, S,, Sg) and Sg). The portion of the integral over So in (7.6) associated with 
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Sf) and Sg) combines to nullify the same terms as in (3.7); the portion over Sc 
is zero by (7 .1) .  This leaves only the integrals over S, and 8, which may be written 

n 

The difference of the stress tensors on 8, and 8, represented by 714) - ~ $ 7 )  in (7.7) is 
equal to Apaiiat every point. Further, the integral of G2ni is zero over S, because 
ti and u satisfy (7.2). Hence (7.7) is zero and (7.6) reduces to 

(7.3) D 3 i ]  = DL[U] + D[f i ] .  

Then (7.5) follows from (7.8). 
A maximum principle similar to theorem 2 for spatially periodic flows can be 

derived for suitably restricted comparison stress fields, Tij. The stress deviator of 
Tij is required to be periodic in x1 and the pressure must exhibit a constant 
difference Ap for all pairs of corresponding points on 8, and 8, of the typical cell. 
Thus - 

qi - Q?kk Sij = periodic in xl, (7.9) 

where Aji is a constant and A and B are any pair of corresponding points on 
S, and 8,. 

The excess power H'[rii] is defined for a periodic Stokes flow having a discharge 
Q and any stress field 7ij satisfying (7.10) by 

1 
H ' [ T { ~ ]  = 2QAp - 1 -(qj - 37kk 6$d V . V o 2 P  

(7 .11)  

where V, and Vg) refer to the typical cell of the flow. 

solution u(x) of the periodic Stokes flow problem with discharge Q,  then 

To prove (7.12), we use (4.7) to show that 

When the stress tensor rii and concomitant pressure drop Ap are those of a 

H ' [ T ~ ~ ]  = Dl[u].  (7 .12)  

Substituting (7.13) in (7.11) and identifying terms with (7.4) yields (7.12). 

(7.13) 

THEOREM 10. A maximum principle. Let u(x) be a continuous solution of a 
periodic Stokes flow problem satisfying (2.1), (2.2), (2.7)-(2.13), (7.1) and (7.2). 
Let Tij be any stress tensor deJined in V, and Vg) which is  piecewise continuous 
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and piecewtke continuously differentiable and satisfies (2.2), (2.7)-(2.10), (7.9) and 
(7.10). On surfaces of discontinuity of Tii the traction n;?,,is required to be continu- 
ous. Then 

n;[u] 2 H ' [ ~ J .  (7.14) 

The equality holds only if Tij = rij or Tij = rij +p,Sijwhere po  is a constant. 
Proof. Let Tij= qj+Tij. Substituting Tij in (7.11), using (4.10) and collecting 

terms as in (4.11) yields 

H'[Tij] = H ' [ ~ i j ]  - & J k k S ; j ) 2 d V  

+ 2QA17, (7.15) 

where A@ is defined by (7.10) with Tijreplaced by Ttj .  Equations (4.12) and (4.13) 
apply in the present case with S, equal to the sum of S,, sb, S,, Sg) and sg'. 
Considering the fact that bij satisfies conditions of the form (7.9) and (7.10), it is 
found that after substitution of (4.12) and (4.13) in (7.15) that (7.15) can be 
reduced to 

H'[?,j] = H'[7;j] - (Tij - Q?kk&ij)ad V 

(7.16) 

Theorem 10 follows from (7.16) and (7.12). 
A uniqueness theorem for periodic Stokes flow can be derived from theorems 

9 and 10 by the same arguments used to prove theorem 3. The result is 

THEOREM 11. Uniqueness theorem for periodic jows .  A periodic solution u(x) 
of aperiodic Stokesjowproblem satisfying (2.1), (2.2), (2.7)-(2.13), (7.1) and (7.2) 
is  unique for a given discharge Q and the stress rij i s  unique to within a uniform 
pressure. 

If fi is conservative so that it has a potential !2 and the solid particles and liquid 
drops are neutrally buoyant, theorems 9-1 1 can be simplified. 

The condition that the suspended drops and particles be neutrally buoyant 
particles is equivalent to the requirement that IR be continuous in V .  Since fi is 
assumed to be periodic in xl, any difference of !2 at corresponding points of 

(7.17) 
S, and s b  is a constant, i.e. 

where AQ is a constant and A and B are any pair of corresponding points on 
S, and 8,. It follows that 

(7.18) 

rn1,- [QIB = An, 

V 
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where ui and iii are the velocity fields in theorem 9. Proof of (7.18) follows by use 
of Gauss’s theorem, (7.1), (7.2) and (7.17). Adding twice (7.18) to (7.5) yields 

THEOREM 12. If the suspended liquid drops and solid particles are neutrally 
buoyant and the body forces are conservative, then theorem 9 holds with (7.5) replaced 

(7.19) 

Similarly, theorem 10 may be replaced by 

THEOREM 13. If the suspended liquid drops and solid particles are neutrally 
buoyant and the body forces are conservative, then theorem 10 holds with (7.14) 

D[u]+ 2 a(l)A(l) 2 H’[TLi]+ 2QAQ. (7.20) 

The uniqueness theorem for periodic Stokes flows, theorem 11, remains un- 
changed whether the suspended drops and particles are neutrally buoyant or not. 

If there are no liquid drops present, or if the shape of the liquid drops is 
assumed to be constant, the terms involving &)in (7.19) and (7.20) do not appear 
and theorems 12 and 13 give bounds on the dissipation D[u] directly. I n  this case 
theorem 9 can be reformulated as follows: 

THEOREM 14. The solution u(x) of a periodic Stokes $ow problem satisfying 
(2.1), (2.2), (2.7)-(2.13), (7.1) and (7.2) produces less dissipation than any other 
periodicjlow a(x) satisfying (2.1), (7.1) and (7.2) for the same discharge Qprovided 
(i) E(x) is  continuous and piecewise continuously differentiable; (ii) body forces are 
conservative; (iii) suspended solid particles and liquid drops are neutrally buoyant 
and of constant shape. 

Theorem 14 can be applied to the steady laminar flow of a uniform liquid with 
no suspended particles in an infinite pipe of any uniform cylindrical cross-section. 
Such a flow may be considered periodic with any periodicity A ,  0 < h < 00. Then 
theorem 14 states that the laminar flow solution of this problem has less dissipa- 
tion than any spatially periodic comparison flow of the same discharge. This is a 
result that was proved previously by Thomas (1942) for the case of uniform flow 
in a circular pipe. 

Theorem 14 is also of interest for approximate computation of the pressure drop 
in a model of capillary blood flow in which the red blood cells are represented as 
deformed liquid drops of constant shape spaced periodically in a uniform circular 
tube. 

replaced by . N L  

I = 1  

This work was supported by the Office of Naval Research under Project 
NR 062-393. 

Appendix. Analyticity of ui 
The equations of motion (6.7) and continuity (2.1) may be written 
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and u. 2.2 ’ = 0, (A 2 )  

(A31 
1 

PJ 
where F = -@+a). 

The equations (A 1)  and (A 2) are identical in form to the equations of linear 
elasticity with Poisson’s ratio equal to fr and zero body forces, as discussed by 
Duffin (1956). Assuming only that the derivatives in (A 1) and (A 2 )  exist and 
are continuous in an open domain E ,  Duffin (1956) proves that F is harmonic, 
i.e. V2F = 0 and hence F is analytic in E.  Now (A 1) may be regarded as Poisson’s 
equation on ui where F,i is analytic. The differentiability theorem given by 
Courant & Hilbert (1962, p. 345) for a general second-order elliptic equation then 
ensures that ‘16,~ is also analytic. Thus F and ui possess derivatives of all orders. 
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Shallow three-dimensional flows with 
variable surface tension 

By J. ADLER A N D  L. SOWERBY 
Department of Mathematics, Imperial College, London S.W. 7 

(Received 8 August 1969) 

The three-dimensional steady flow of a shallow viscous liquid with non-uniform 
surface tension has been considered when the variation in surface tension results 
from the presence of an insoluble chemical contaminant on the surface. Similarly 
solutions for the particular problem of a channel flowing into a semi-infinite 
lake have been obtained, the depth and surface concentration at  infinity being 
specified. 

1. Introduction 
There are many physical situations in which fluid motion takes place with 

variable surface tension, and in recent years there has been considerable interest 
in such phenomena; Kenning (1968) refers to a hundred publications relating 
to work in this field. The variation of surface tension along the interface of a 
fluid gives rise to tangential stresses which effect the motion of the fluid. Variation 
in the surface tension can occur for several reasons; examples cited by Levich 
(1962) are variations in the surface temperature and electric charge and changes 
in concentration of a surface active material. 

Fluid flow with a surface active contaminant is of industrial importance and 
also takes place under natural conditions. A variable surface tension has probably 
the greatest influence on shallow flows and a two-dimensional problem of this 
kind has been considered by Yih (1968). In  Yih’s problem two reservoirs of fluid 
are connected by an open shallow channel with the depths of fluid and surface 
concentration of contaminant maintained in each reservoir. Steady motion takes 
place in the channel under the action of liquid head and surface tension variation. 

2. Statement of the problem 
The purpose of our paper is the extension of Yih’s analysis to three-dimensional 

flows. A thin layer of insoluble surface active material is assumed to lie on the 
surface of a region of shallow liquid, the thickness of the layer being negligible 
compared to the depth so that it is permissible to define the concentration in 
terms of the density c per unit area. There is no transport of contaminant into 
the main body of the liquid; this occurs only along the surface. The surface tension 
cr’ is assumed to be related linearly to the concentration, namely 

cr’ = cr; + yc, 
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in which u; and y are constants. For the purpose of our analysis it is convenient 
to introduce the relative surface tension u where 

a = a‘--& 

and we note that (T generally takes negative values. 
The variation of concentration and hence surface tension gives rise to tractive 

forces along the surface which through the action of viscosity are transmitted 
to the bulk of the fluid. The spatial variation of hydrostatic head and surface 
tension will produce a steady flow of varying depth, but we shall assume that 
such changes are sufficiently small for the surface curvature to  be neglected. 

The steady state problem considered by Uih is the determination of u and the 
depth h of liquid in the channel connecting the two reservoirs. Depending on the 
depths of the reservoirs and the direction of flow of the contaminant, two dis- 
tinct situations are possible, where the bulk flow is in the direction of increasing 
surface tension and where it is in the direction of decreasing surface tension. 
I n  this paper we shall consider in particular the corresponding problem in which 
a channel of fluid flows into a semi-infinite lake, with the surface material either 
flowing from or into the lake depending on the relative states of contamination. 

3. Equations of motion 
With (2, y, z )  as Cartesian co-ordinates, z is measured vertically from the 

horizontal bed of the liquid, which is locally of depth h(x, y). If (u, v, w) are 
Cartesian components of velocity, the diffusion equation for the surface material 
can be written in terms of a( = yc), and is 

:xi E) :y( :;) a a 
--(uu)+-(vu) = -  D- +- D- 
ax ay 

a t  2 = h. Here D is the diffusivity of the material in the surface, and this will 
be assumed to be constant, as also will be the viscosity p and density p of the 
liquid. 

The equations of motion of the liquid are simplified, as in the case of lubrication 
theory, in that inertia terms are negligible and also the dominant element only 
in the viscosity terms need be retained. Thus, i f p  denotes the difference between 
the fluid pressure and the atmospheric pressure, the equations become 

2 - a2u 
ax - PZF 3 1  

with the equation of continuity 

au av aw 
ax ay a2 
-+-+- = 0. (3.3) 
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Boundary conditions at z = 0 are 

u = v = w = o ,  (3.4) 

and at the free surface z = h, continuity of stress components requires that 

p7& = - 9  

and 

(3.5) 

in which the assumption of small surface curvature is implicit. Finally, there is 
the kinematical boundary condition at the free surface, namely at z = h, 

ah ah 
w = u-+v- .  

ax ay 

4. The field equations for IT and h 
Both u and h are functions of x and y only, and so also are aplax, ap/ay (from 

equations (3.2)). Thus a solution of equations (3.2) for u and v, satisfying the 
boundary conditions (3.4) and (3.5), is 

and the solution for p is clearly 
I, = Pg(h-z). 

Levich (1962) and Yih (1968) obtained expressions similar to these for the two- 
dimensional channel flow problem. 

With the introduction of the two-dimensional gradient operator 

v = (alax, alay, o), 

VP = p g m  result (4.2) yields 

and thus from (4.1), the velocity components in the surface are given by 

h 

P 
(Uh, V h )  = - V(U- &pgh2). 

These surface values, when substituted in the diffusion equation (3.1), give 
the equation 
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The equation of continuity (3.3), when integrated with respect t o  between 
the limits z = 0, h, yields with use of result (3.6), 

After performing the integration with respect to  z of expressions (4. l), this last 
equation becomes 

Equations (4.3) and (4.4) are thus the required field equations. 

5. Similarity solution of the field equations 
The field equa.tions appear to  be intractable as they stand, but it is possible 

to  derive solutions of physical interest in the following manner. Postulate the 
existence of scalar fields $(x, y), +(x, y) defined by 

(5.1) 

(5.2) 

(5.3) 

huV(n-  &Pgh2) -pDVu = pVQ, 

h2V(u - QPgh2) = 2pV$. 

v2+ = V2$ = 0. 

Equations (4.3), (4.4) imply therefore that 

Further, on forming the curl of either (5.1) or (5.2) we derive the result 

V h x Q a  = 0; 

i.e. (5.4) 

Thus h and u are functionally related, so there exists a family of curves in 
the (2, y) plane on each member of which h and u assume constant values. We 
may thus introduce a curvilinear co-ordinate C(x, y) so that the family is the 
system C(x,y) = const., 

and h and c are functions of 6 alone. If further we set $ = kl(<- l), $ = k&- 1 ), 
where k,, k, are constant, then 5 must be harmonic, and equations (5.1), (5.2) 
become the ordinary differential equations 

d 
h2 - (r- &Pgh2) = 2 k 2 , ~ ,  (5 .6 )  

(15 

and these are equivalent to  the equations derived by Yih for the two-dimensiond 
problem. We note also, from expressions (4.1), that  the component of fluid 
velocity parallel to  the base z = 0 is everywhere in the direction V t .  
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The nature of the constants k,, k, is not apparent from this approach, but 
alternatively the direct postulation of a similarity solution of (4.3), (4.4),  namely 
c = (r(lJ, h = h( t )  leads to the conclusion that 6 must be harmonic and (4 .3) ,  
(4 .4)  then have first integrals as exhibited in (5 .5 ) ,  (5.6). Thus k,, k ,  are constants 
associated with the surface and bulk flows respectively. 

6. The characteristic equation 
Equations (5.5) and (5.6) can be rewritten in the form 

It is clear from the form of these equations that it is necessary only to consider 
the two cases k,, k, > 0 and k, < 0, k, > 0. The co-ordinate E is already dimen- 
sionless, and the following substitutions may be used to reduce equations (6 .1) ,  
(6.2) to non-dimensional form: 

The above equations now become: 
dY ci 

( X Y - 1 ) -  = - ( X - Y ) ,  a< x 
( X Y - 1 ) -  CJX = - ( 3 X 2 - 4 X Y + l ) .  P 

at x3 

The characteristic, or phase-plane, equation deduced from this pair is thus 

dY C X , ( X - Y )  
ax - 3 X 2 - 4 X Y + l ’  
_ -  

where C = alp. 
(ii) k,  < 0, k ,  > 0. 

In  this case the substitutions 
3kl k,  @ B = - 6 , ~ D k , k , ,  01 = ~ 

2DB3’ B = w B ’ \  

2Bt Y B3X 
(r=- h=--- 

3k, kl ’ 
lead to the equations 

dY a 
x ( X Y - 1 ) -  = - ( X + Y ) ,  
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(6.10) 
dY CX2(X+ Y) 
dX = 3X2+4XY-17 

and C = alp. 
Since h is essentially positive and u negative, the region of physical interest 

in both (i) and (ii) corresponds to X > 0, Y < 0. Also C is positive in both cases, 
with a, /3 positive in (i), and negative in (ii). 

7. Diffusion from a channel into a semi-infinite lake 
The lake occupies the region x 0 in the (x, y) plane and the channel extends 

in the negative x direction, its mouth being represented by the line x = 0, 
- u < y < a. It is supposed that k,, k, > 0, and that the following boundary con- 
ditions apply: 
u and h have constant prescribed values on x = 0, ly/al < 1 ; u -+ ul, h + h, 

(ul, I t ,  constant) as x/a and ly/u] + CO; Q + (T,, h +- h, on x = 0, ]y/al > 1. 
Clearly x, y can be made non-dimensional by a simple change of variable, so 

that ifthey are now interpreted in this dimensionless form, the harmonic function 
[ can be set to have boundary conditions 

6 = 0, for x = 0, Iyl < 1, 

6 = 1, for x = 0, IyI > 1, 

t-+ 1 as 2, IyI +a. 

(The region in which a solution is required is z 

be written 

0.) 
A solution of Laplace's equation suitable for these boundary conditions can 

Thus 

and hence from the theory of Fourier transforms, 

2 tsinh 
= (71) n. 

Hence 

and evaluation of the integral now leads to the result 

1 2x 6 = 1--  tan-, 
7r 

The curves 6 = const. are thus 

(z + cot + y2 = cosec2 (nt), 
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which is a system of coaxal circles, with common points (0, l), centres 
( - cot (nc), 0) and radii cosec (nc). 

Some degree of idealization is involved in solving the problem subject to the 
above boundary conditions. What one would expect physically are rapid changes 
in contaminant concentration and liquid depth along the boundary near the 
mouth of the channel but that these quantities remain nearly constant there- 
after. Our solution has transformed the changes into the singular points (0 , l )  
and (0, - I) at the corners of the channel. Such an assumption does in fact imply 
that the solution is not valid near the corners since the surface curvature will 
not be negligible in these regions. 

We show that the boundary conditions are compatible with the requirement 
that the components of surface velocity at  the edge of the lake shall vanish. The 
conditions 

uR = wh = 0, for x = 0, IyI > 1,  

imply that 

With changes of variable (6.3), this is equivalent to 

ax -px- = 0. 
dY 

d c  
E = l :  - 

dE 

(7.3) 

(7.4) 

The condition (7.4) must be compatible with differential equation (6.6), so that 

from which it follows that X = 1, for all Y .  This boundary value for X has been 
used in subsequent numerical integrations. 

8. Numerical results 
This section refers to the solution of equations (6.4) and (6.5), but for the 

purpose of discussion it is convenient to refer also to the particular physical 
problem of $7. The trapezoidal rule, with one iteration, was used to solve the 
equations, and the calculations were performed on the IBM 7094 computer at  
Imperial College. 

For given physical parameters, the ratio k,fk, determines the dimensionless 
height X in terms of the physical height h, and also the value of C. Equations (6.4), 
(6.5) were solved for X and Y in the range 0 < 6 < 1, corresponding to the whole 
of the physical space in 3 7. As explained in 8 7 the fixed height X = 1 was taken 
at = 1; the value of Y at the same point was set at  - 1. For the solutions pre- 
sented here, the value of C (=  alp) was set at  1, 10, and 0.1 respectively, but a 
and p were increased separately for each case. The corresponding graphs of X, Y 
versus 6 are displayed in figures 1, 2, and 3. From the viewpoint of the problem 
considered in 0 7, these solutions represent a situation in which the outflow from 
the channel has a lower concentration of surface contaminant than that existing 
on the lake at  great distances from the channel mouth. Thus Y decreases from a 
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small negative value at f; = 0 to the value - 1 at f; = 1, and in each case the 
decrease appears to be monotonic. Essentially, in place of prescribing X and Y 
at = 0, the values of a and p have been prescribed. Thus the solutions yield 
the corresponding values of X and Y at f; = 0. In  particular the computations were 

0.2 0.4 0.6 0-8 1 .o 
I 

0.2 0.4 0.6 0.8 1.0 
I I I 1 I 

- 0.2 

- 0.4 

Y - 0.6 

-0.8 

- 1.0 

FIGURE 1. Curves of X and Y versus 6 for C = 1 .  

arranged to produce, for each value of C, one solution for which the value of Y 
was close to zero at  6 = 0. Such a solution can be seen in each of the three figures, 
and represents a situation in which the outflow from the channel is almost free 
of surface contaminant. 

9. Discussion 
The comparison of equations (5 .5 )  and (5 .6 )  with the corresponding equations 

of the two-dimensional problem shows that the constants, k,, k, are associated 
with the surface and bulk flows respectively. In the case of flow from a channel 



Shadow three-dimensional Jlows with variable szcrface tension 557 

into a semi-infinite lake they are proportional to  the constant surface flux and 
constant bulk flux per unit width of channel. I n  view of the relationship between 
surface tension and surface concentration, the condition k, > 0 implies that  
surface material is flowing out of the lake and here the bulk flow is in the direc- 
tion of falling surface tension. Similarly k, < 0 implies that contaminant is 
flowing into the lake, with the bulk flow in the direction of increasing surface 
tension. 

0.2 0.4 0.6 0.8 1 .o 
5 

0.2 0.4 0.6 0.8 1 .o 
I 1 I I I 0 

- 0.2 

-0.4 

Y 

-0.6 

-0.8 

- 1.0 
FIGURE 2. Curves of X and Y versus E for C = 10. 

Solutions of the flow equations have been obtained in similarity form, but 
such solutions will not always exist since it may not be possible t o  satisfy the 
boundary conditions. I n  the problem of a channel flowing into a semi-infinite 
lake the situation has been idealized to  some extent by assuming a constant 
depth and constant concentration of contaminant across the mouth of the 
channel. The similarity solution implies that maximum changes in surface tension 
occur along lines of greatest slope in the surface, which appears to be a reasonable 
result on physical grounds. 

In  his analysis of the two-dimensional channel flow problem, Yih considered 
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two physical situations-where the bulk flow is zero, and where the velocity 
component in the surface is zero, respectively. The solutions corresponding to 
zero surface flow appear to be inconsistent since the equation of continuity is 
not satisfied. A more serious error arises in connexion with equation (1)  of Yih’s 
paper, which is essentially the transport equation for the surface contaminant. 
The quantity used by Yih is the relative surface tension, which for an insoluble 

2 -  

0 I I I I I 

0 

- 0.2 

-0.4 

Y 

- 0.6 

-0.8 

- 1.0 

0.2 0.4 0.6 0.8 1 .o 
F, 

0.2 0.4 0.6 0.8 1 .o 
I I I I 1 

FIGURE 3. Curves of A’ and Y versus 6 for C = 0.1 

surface active agent is generally negative. This invalidates the discussion con- 
cerning the possible instability of the flow, since inequalities of the kind con- 
sidered, equation (20), can no longer arise. The result that the flow is always stable 
may be obtained by examining the phase plane equation (6.6) of our paper, the 
region of physical interest being X 2 0,  Y < 0. Possible cusp-like solutions are 
associated with integral curves crossing the curve X Y  = 1. Associated with 
equation (6.6) are two singular points, (1,l) and ( -  1, - 1); for a certain range of 
the parameter C a limit cycle encloses the point ( 1 , l )  but this lies entirely in the 



Shallow three-dimensional flows with variable surface tension 559 

region X > 0, Y > 0. It follows that flow instabilities associated with the cusp 
curve or with a limit cycle cannot arise. 

Yih (1969) has recently considered the three-dimensional motion of a shallow 
liquid layer with variable surface tension, for the situation where A u  B pgh;, 
Au being a characteristic change in u and h, a vertical scale. Under these condi- 
tions the flow is independent of gravity and the pressure constant throughout 
the fluid. He finds the depth and surface tension to be functionally related and 
shows that a simple polynomial of the depth is a harhonic function of the 
horizontal co-ordinates x and y, The flow near vertical boundaries is dealt with 
by considering a velocity boundary layer whose thickness is of the same order as 
the depth. An explicit solution for the velocity distribution in the layer is given, 
for the case where the angle of contact between the free surface and the boundary 
is &T. 
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Trailing-edge stall 

By S .  N. BROWN AND K. STEWARTSON 
Department of Mathematics, University College, London W.C. 1 

(Received 18 July 1969) 

A study is made of the laminar flow in the neighbourhood of the trailing edge of 
an aerofoil at incidence. The aerofoil is replaced by a flat plate on the assumption 
that leading-edge stall has not taken place. It is shown that the critical order of 
magnitude of the angle of incidence a* for the occurrence of separation on one 
side of the plate is a* = O(R-A), where R is a representative Reynolds number, 
for incompressible flow, and a* = O(R-*) for supersonic flow. The structure of 
the flow is determined by the incompressible boundary-layer equations but with 
unconventional boundary conditions. The complete solution of these funda- 
mental equations requires a numerical investigation of considerable complexity 
which has not been undertaken. The only solutions available are asymptotic 
solutions valid at  distances from the trailing edge that are large in terms of the 
scaled variable of order R-8, and a linearized solution for the boundary layer over 
the plate which gives the antisymmetric properties of the aerofoil at  incidence. 
The value of a* for which separation occurs is the trailing-edge stall angle and an 
estimate is obtained from the asymptotic solutions. The linearized solution yields 
an estimate for the viscous correction to the circulation determined by the Kutta 
condition. 

1. Introduction 
The flow near the trailing edge of a flat plate aligned with a uniform stream in 

an incompressible viscous fluid has recently been studied by both Stewartson 
(1969) and Messiter (1969). Both authors showed that when the Reynolds 
number R is large the flow in the neighbourhood of the trailing edge of the plate 
has a complicated three-layer or triple-deck structure. This triple deck is similar 
to that encountered by Stewartson & Williams (1969) in their investigation of the 
self-induced separation of supersonic flow. In the sublayer, of thickness O(R-Q), 
the appropriate equations are the incompressible boundary-layer equations but 
with boundary conditions involving a match with the main deck, which is 
essentially inviscid; additionally, in the trailing-edge problem, matching is neces- 
sary both with the Blasius (1908) solution upstream and the Goldstein (1930) 
wake solution downstream. The numerical solution of the sublayer equations 
successfully carried out by Stewartson & Williams (1969) was aided by the fact 
that the upper-deck equation in the supersonic case is the wave equation rather 
than the potential equation. This leads to a slightly simplified outer boundary 
condition in the lower deck. 
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The cause of this triple deck in the trailing-edge problem is the change in 
boundary condition a t  the trailing edge 0 from zero tangential velocity to zeio 
stress on the line of symmetry. The effect of the triple deck is to induce a favour- 
able pressure gradient upstream of 0. The transition of the solution through 0 is 
achieved by the Rott & Hakkinen (1  965) similarity solution. Downstream of the 
trailing edge the pressure increases, slightly overshooting its main-stream value 
before tending to it from above. 

The present paper extends the work of Stewartson (1969) to the case when the 
plate is at  a small angle of incidence to the oncoming stream. The purpose of the 
study is to estimate the circulation around a two-dimensional aerofoil at inci- 
dence when the effect of viscosity is taken into account. When the viscosity is 
zero this is determined by the Kutta condition. We also aim to elucidate some of 
the phenomena of trailing-edge stall. We make the assumption that the ratio of 
the thickness of the aerofoil to the angle of incidence is large enough for the fluid 
not to separate at  the leading edge, and that the flow remains attached over the 
forward part of the body. Thus the boundary layer approaches the trailing edge 
in an adverse pressure gradient on the upper side of the aerofoil, though the 
incidence induces a favourable pressure gradient on the lower side. Within a 
distance O(R-3) of 0 the effect of the triple deck, discussed above for the sym- 
metrically disposed plate, makes itself felt. The boundary layer on the upper side 
of the aerofoil thus experiences a favourable pressure gradient which tends to 
counteract the adverse gradient due to the incidence. If the angle of incidence is 
large the flow separates before it is influenced by the triple deck, and if the angle 
is too small the effect of the triple deck outweighs that of the incidence and the 
boundary layer remains attached right to the trailing edge, If, however, the 
angle of incidence a* is O(R-$) the two effects are comparable, and we postulate 
the existence of a critical angle R - h s  at which trailing-edge stall is liable to 
occur since the flow just separates on the upper side of the aerofoil. 

In order to bring out the essential features of the trailing-edge problem 
unencumbered by complicated geometry, we replace the aerofoil by a flat plate 
at  incidence in a uniform stream. This simplifies the main-stream velocity, and 
justification for the replacement is discussed in $2.  The flow upstream of the 
trailing edge is then the Blasius flow plus a perturbation that is O(a*). At this 
stage the flow on the lower side of the plate is obtained from that on the upper 
side by changing the sign of a*. These two boundary layers then separately enter 
the triple deck which is centred on 0 and of thickness O ( R 4 ) .  The equations that 
then hold in the lower deck have more complicated boundary conditions than in 
the case of the symmetrically disposed plate, as the unknown functions that 
appear in them are no longer the same on both sides of the plate. At 0 the 
boundary condition of zero velocity on the plate is abandoned and instead the 
pressure must be continuous across the wake. Downstream the solution must 
finalIy become that of the Goldstein wake though with the centre line displaced, 
The equations for the fundamental problem of the lower deck are set up, though 
a full numerical solution has not yet been undertaken. However, it is shown that 
the partial differential equations have the correct asymptotic behaviour both 
upstream, where they match with the perturbed Blasius solution, and 
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downstream where they match with the modified Goldstein wake mentioned 
above. In  this asymmetric problem the transition through the trailing edge 
itself is achieved by an extension of the Rott & Hakkinen (1965) solution for 
the symmetrically disposed plate. 

Although the complete solution remains to be computed for the plate at both 
zero and non-zero incidence, the asymmetry of the flow about the aerofoil at 
incidence enables some of the features of the flow to be deduced from a linearized 
solution of the equation. Upstream of the trailing edge it is reasonable to linearize 
about the linear shear with which the streamwise velocity must match at  the 
outer edge of the lower deck. A solution of the resulting equation for the difference 
in the streamwise velocity components on the top and bottom of the plate is then 
obtainable by Wiener-Hopf arguments without the need to solve for the 
boundary layer in the wake. This equation involves the anti-symmetric part of 
the unknown pressure which must vanish downstream of the trailing edge. The 
resulting solution, whose asymptotic form is correct both upstream and down- 
stream of 0, is consistent with the predicted behaviour of the solution of the full 
non-linear equations and leads to an estimate of the viscosity correction to the 
circulation given by the Kutta condition. 

The final section of the paper describes the modifications required if the fluid 
is compressible. If the flow is subsonic the incompressible results carry over with 
a scaling involving the Mach number and temperature at  infinity. If it is super- 
sonic the critical angle of incidence for separation and trailing-edge stall to occur 
is a* = O(R-t). In this case the boundary conditions for the lower-deck problem 
are similar to those of Stewartson & Williams (1969). 

2. The exterior inviscid flow 
Consider a two-dimensional aerofoil of length 1 with a sharp trailing edge in an 

infinite incompressible fluid of density p and kinematic viscosity v. At infinity the 
velocity of the fluid is uniform and of magnitude U,, and the aerofoil, which is 
without camber, is fixed at an angle a* to the direction of the undisturbed stream. 
The design of the aerofoil is such that the flow over it is smooth and attached 
except possibly in the immediate neighbourhood of the trailing edge. For leading- 
edge separation to be avoided it is necessary to have the thickness ratio T of the 
body very much greater than the angle of attack. If T = O(a*),  so that the two 
quantities are of the same order, the initial stagnation point is followed by a 
region of rapid pressure fall on one side of the aerofoil and then by a region 
of adverse pressure gradient which can provoke separation and long or short 
bubbles of reversed flow. Here we wish to exclude this phenomenon so that 
we can concentrate on trailing-edge stall and so we take r B a*. However, we 
wish to keep the external inviscid flow as simple as possible and consequently it 
would be convenient to replace the aerofoil by a flat plate at incidence a* since 
this is sufficient to bring out the essential features of the trailing-edge flow. Since 
trailing-edge stall is estimated to occur when a* = O(R*-), consideration of this 
simpler geometry may formally be justified if we suppose, for example, that the 
aerofoil has thickness ratio T = O(R*) in which case leading-edge separation 

36-2 
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will not occur. Here R = U, 11. is the Reynolds number and is taken to be large, 
though the flow is assumed to remain laminar and steady throughout. The effect 
of a non-zero trailing-edge angle /3* is of secondary importance if /?* is sufficiently 
small since, as shown by Riley & Stewartson (1969), the flow does not separate 
over a symmetrically-disposed wedge if /3* < R-4. A similar situation occurs for 
a cusped trailing edge. We take p* << R-f ,  so that the effect of the trailing-edge 
angle is negligible compared with that of the incidence. Although we shall con- 
centrate on a flat plate from now on, our results may easily be generalized to 
include aerofoils of thickness ratio r = O( 1) .  The only modification necessary is 
to the external inviscid flow, which in the neighbourhood of the trailing edge has 
the same structure as for a flat plate. 

The plate is taken to occupy the strip - 1  < x* < 0 of the x* axis with the 
origin of co-ordinates at the trailing edge. The velocity components in the x*, y* 
directions are u*, v* respectively and a t  an infinite distance upstream, i.e. as 
x* --f - GO, we have, making use of the assumption that a* < 1, 

u* -+ u,, v* -+ u, a*. (2.1) 

Since leading-edge separation has not occurred, and the Reynolds number is 
large, it is legitimate to expect that the flow is inviscid almost everywhere, the 
exceptions being the neighbourhood of the flat plate and the wake extending 
downstream from the trailing edge. The inviscid solution outside these regions 
is well-known and has the properties that on the flat plate (y* = 0, - 1 < x* < 0) 

and on the wake centre line (y* = 0, x* > 0 )  

(2.2) 

(2.3) 

where B is a constant to be determined. 
The constant B is usually determined by the Kutta condition applied at  the 

trailing edge. An interpretation of this condition, which implies B = 0, is that 
a stagnation point on the upper side of the plate near the trailing edge is to  be 
excluded. If such a stagnation point occurs it is argued that the boundary layer 
must separate further upstream on that side of the plate. The lift coefficient 
derived from (2.2) is 

(2.4) c, = 27ra" (1 +), 
and if B = 0 it is broadly in line with experiment for small a*. However, the 
inviscid theory, in conjunction with the Kutta condition, does not explain why, 
at some value ofa*, usually between 5" and 15", catastrophic stall, nevertheless, 
sets in. The contribution to the theoretical explanation of the observed flow 
properties to be made here may be summarized as follows. First, if a* is SUB- 
ciently small no separation occurs. The reason for this is that the change in 
character of the boundary layer as the trailing edge is approached induces a 
favourable pressure gradient which dominates the adverse pressure gradient 
implied by (2.2). Secondly, when a* is of a critical order of magnitude, in fact 
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when a* = O(R*), the boundary layer associated with the main stream ( 2 . 2 )  
must always separate before x* = 0. Stall begins, therefore, when a* is large 
enough to cause the boundary layer to separate before the induced favourable 
pressure gradient is able to make its impact. In  these circumstances it emerges 
tha.t the constant B = O(R-&) which results in a stagnation point of the inviscid 
flow at a distance -x*l l= O(R-k) upstream of the trailing edge. In order to 
quantify this argument we now consider the boundary layer corresponding to 
the main stream (2.2). 

3. The perturbed Blasius flow 
Apart from the immediate neighbourhood of the leading and trailing edges 

the velocity of slip implied by (2.2) is virtually uniform. For the reasons outlined 
in the previous section the singularity in ( 2 . 2 )  at x* = -1, the leading edge of the 
plate, is ignored, and on the upper side of the plate, to which we shall restrict 
attention in this section, we replace the main-stream velocity by U,(x*) where 

U,(X*) = u, + U,a*( -x*/zp. (3.1) 
Thus we have simplified the slip velocity and set B = 0. The f is t  modification 
leads to an error in both the slip velocity and its derivative that is small over the 
whole of the plate, except for the leading edge, and therefore will not make a 
significant contribution to the theory below. The second modification anticipates 
that B = O(R-$1) and may be justified aposteriori. We note, however, that even 
if B = O(Z) the main properties of the perturbed Blasius flow can easily be 
inferred from the discussion when B = 0. 

We define the parameter e by 

e-5 = R = U,l/v, (3.2) 

t = 1 +x*li, 5 = y* /1E4 ,  = u*lum, v = v*iu,c4, (3.3) 

and introduce the non-dimensional variables 

in terms of which the boundary-layer equations appropriate to the main stream 

These equations are to be solved subject to the boundary conditions 

and if a* = 0 the solution is u = fi({) where t: = jj/@ and fB({) is the Blasius 
function withf,(O) =fg(O) = 0, fg(0)  = h = 0.3321. When a* is small but non- 
zero we seek a perturbation to the Blasius solution in the manner described by 
Riley & Stewartson (1969) in their analogous investigation in the case of a wedge. 

Z L = V = O  on ij= 0; u-t1+a*(l-LJfr as g+co, (3.5) 

We &rite m 

=fi;(t:)+a* c tm+lf ;L(~)+o(a*~)  
n=O 

in (3.3), and the equation satisfied by the functionfA(5) is 
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with boundary conditions 
(n - i)! 

fn(0) = fA(0)  = 0, fA(cO) = - 2n3(n+ l ) ! .  (3.8) 

Since we are interested in the singular behaviour of the solution (3.6) as f[-> 1, 
the trailing edge of the plate, we examine the functions fnfor large values of n by 
writing 

The equation for an is exactly that considered by Riley & Stewartson (1969) and 
in the same wav it follows that 

2 r w x )  = @A) +o( l ) .  (3.9) 

if 5 = O ( l ) ,  but if cis small so that n*[ = O(l),  then 

(3.10) 

(3.11) 

since (3.10) does not satisfy the boundary condition a t  the wall. Here Ai is the 
Airy function. 

Thus, near f [  = 1,  ( -$)!  m en 
u w f&) -a* --__- faY) c --x 

n, lne  
(3.12) 

for any fixed y > 0, while the skin friction must be calculated from the expression 

(3.1 3) 

Since the terms in the series in (3.12), (3.13) were deduced from the properties of 
(3.7) for large n only, these solutions may be augmented by any term O(a*) 
having an expansion in powers of 6 which, when 6 = 1, converges more rapidly 
than the term given. It follows from (3.12) that, near 6 = 1, 

64( -$)! = f A Y )  +a* (g*(Y) + 7 (1 - f[)*faa,) , (3.14) 

where the singular part of g*(jj) as v+ 0 is obtained by letting f [  -+ 1 in the expres- 
sion for 2 t  in (3.13). Thus for small we have 

(3.15) 

In  (3.14) the error in replacingfL(5) byf,&j) is O(l- f [ ) ,  and the term in a* is in 
error by powers of 1 - 6 higher than (1 - E)*. 

The behaviour of g*@) for small ij is most easily found by consideration of the 
shear stress which may be deduced from (3.13). It is proportional to where 

(3.16) 

to which may be added any term O(a*) which when = 0 and f [  = 1 diverges 

less strongly than C r z .  Investigation of (3.16) reveals that the double limiting 

process ij --f 0 , 6  --f 1 is non-commutative. If we let ij+ 0 first we obtain 

m 

n=l 

(3.17) 
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where the Airy function has been replaced by an integral representation. In order 
to investigate the behaviour of (3.18) as ?j-+ 0 we consider the summation which 
is the real part of the integral 

(3.19) 

since the interchange of summation and integration may be justified. The series 
in (3.19) converges for a'll i j  > 0, and because 

exp (injB) = 1: expi:@) (3.20) c d t + 0 ( 1 )  as B+O+ 
n=l  n8 

it follows that, for small 8, 

j(Y) = 
Hence finally, for small jj, 

so that g*(?j) differs from - 

(3.21) 

(3.22) 

(3.23) 

by a constant as j j - t  0 and has a singular derivative at  i j  = 0. 
It is at  this stage that we first have confirmation of the prediction of $ 2  

regarding the order of magnitude of a". We know (Stewartson 1969, to which we 
hereafter refer as I) that if a* = 0 the Blasius flow breaks down when 1 - 6 = O(e3) 
since the trailing edge induces a favourable pressure gradient. If the adverse 
pressure gradient caused by the incidence is to be comparable, we see from (3.17) 
that a* = O ( d ) .  This is also consistent with (3.22) since within a distance O(e3).  
of the trailing edge the appropriate scale for jj in the immediate neighbour- 
hood of the wall is 

The following section describes the modification to the trailing-edge triple 
deck of I to accommodate the singular behaviour of au/@ as demonstrated in 
(3.17), (3.22) in the respective limits i j + O  for fixed 6 + 1 and C+ 1 for fixed 
jj > 0. It will emerge, as is indicated by (3.13), that the appropriate combination 
of co-ordinates in the neighbourhood of the wall is jj/( 1 - E)* ,  a variable that 
remains O( 1 j in the scaled co-ordinates of the lower deck. 

= O ( E ) .  

4. The trailing-edge triple deck for y* > 0 

Even if a* = 0 and the Blasius flow is maintained over - 1  < x* < 0, it has 
already been shown in I that it must break down within a distance O(e31) of the 
trailing edge. Also as z* -+ 0 - the work of the previous section already shows 
that the boundary layer is taking on the familiar properties of the lower and 
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main decks, of thicknesses O(&) and O(e4Z) respectively. Further, the normal 
velocity associated with the main deck is seen from (3.14) to  be 

O(U,a*s4( -x*/z)-g) (4.1) 

and is of the same order as the term O(a*) in the slip velocity (3.1) when 
-x* = O(e3Z). Now, as demonstrated in I, the increase in slip velocity induced 
by the change in boundary condition a t  y" = 0 when x* changes sign is O(e2Um) 
which is comparable with (4.1) in the triple deck if a* = O(s4). For larger values 
of a* separation occurs for -x* % s3Z on the upper side of the plate, and for 
smaller values of a* the effect of the incidence is negligible in comparison with 
the trailing-edge effect. Accordingly, interest centres on values of a* such that 
a = O(1) where 

where h = fg(0) = 0.3321 and is introduced here merely to simplify the funda- 
mental equation (3.14). 

In  setting up the triple deck the arguments given in Stewartson & Williams 
( 1  969) and in I are used extensively. The main modifications necessary are to the 
boundary conditions which depend on §$2, 3. Otherwise the structure is taken 
over, with notation, from I. We write 

a* = €ahfa, (4.2) 

P = e3~-21x, = e 4 ~ - 8 i y ,  u* = umu, v* = u , A ~ ,  
p" = pm+pU2,A*p, (4.3) 

where u, v,  p are functions of x ,  y. Then in the main deck x = 0(1), y = O( 1) and 
we set up the following formal expansions for u, v, p :  

u(z,y) = U,(y) +e:u&(y) +ElogEU11(y) +EU& y) + ... : 

P ( X , Y )  = eZp2(x, y) + . . * . 

(4.4 a)  

v (x , y )  = e2v1(z, y) $- . . . . (4.4b) 

(4.4 c) 

Here U,(y) = f&) and is the velocity profile a t  x* = 0 as given by the Blasius 
solution. The function u+(y) is a constant multiple of g4(Tj) as introduced in (3.14), 
and results from formally letting x* tend to  zero in the perturbation of order €4 
caused by the pressure variation of the same order. This term and the term 
O(s1oge) are the only ones that differ from I (equation (3.1)). The presence of the 
latter is indicated by the form taken by the solution at  the outer edge of the 
inner deck, and reference to  it is made again in $ 5 .  Neither, however, makes 
a contribution to  ul(x ,  y) since both are functions of y alone. The boundary condi- 
tions satisfied by ul, vl,  p 2  upstream of the triple-deck region are obtained from 
the part of the perturbation Blasius solution of $ 3  that  has a singular derivative 
as x*+ 0 - . The relevant matching is provided by (3.14) and we have 

as x-+-cc with y = O(1). On substituting (4.4) into the full Navier-Stokes 
equations and equating the coeficients of the leading powers of e to zero we 
obtain 

duo 
dY 

UI(x.?/) = Al(X)-, v l (x : ,y )  = -A;(x) uo(?/), P ~ ( x > Y )  = poz(~ ,O) ,  (4.6) 
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as in I (equations (3 .6)  and (3.8)), where A,(x) is a function of x to be determined. 
One equation connecting p 2  and A, follows from the upper deck in which 
y* = O(e3Z) and in which the governing equations are essentially inviscid. To 
obtain this relation we introduce a new variable 

Y = sh8y = h%y*/le3, (4.7) 
and write 

u = 1 + €2U2(X, Y )  + ..., v = € 2 K ( X ,  Y )  + . . ., p = €2P2(X, Y )  + . . ., (4.8) 

where the dots denote higher powers of E .  Then it may easily be shown that 
P2 + iV, is a function of x + i Y only and that 

P,(X, 0) = p2@, O ) ,  v,(x, 0) = -A;(%). (4.9) 

In  I it was straightforward to express p 2  in terms of A; by means of a Hilbert 
integral but there is a slight complication here as p,(x, 0) - -a( -x)3h-Q as 
x -+ - 00 and A;(x)  N axtA-* as x -+ + co so that formally the Hilbert integrals do 
not converge. However the difficulty can be overcome by using Hadamard’s 
notion of the finite part of the infinite integral and then we have 

(4.10) 

where 9 means that the finite part only is to be taken and that the integral is 
a Cauchy principal value. An alternative form is 

1 0 A;(x’)dd + ‘Jm [A;(x’) - ahtz ‘q  s dx’ , 
7r -m 2--5’ 77 0 X - X ’  

p2(x,0) =- ( - -5)4H(-x)+- 
-a  
hB 

(4.11) 
where H is Heaviside’s step function. 

Turning now to the lower deck of thickness O(e5Z) we write 

= hiylc: = ~ 2 ~ * / 1 c : 5  ( 4 . 1 2 ~ )  

and u = E ~ ~ Z , ( X , Z ) +  ..., v = E ’ ~ Q ~ , ( X , Z ) +  ..., p = e2j5,(x)+ ..., (4.12b) 

where F2(x) = hip,(x, 0). Then Q,, fi, satisfy 

(4.13) 

with boundary conditions for x < 0, 

(4.14) 
c1 = o = 6, if x = 0, iil-z-+A,(x) as 

i i l - z+O as x+--oc), 
where Al (x )  = hiA,(x). 

No boundary conditions have so far been given for (4.13) in x > 0 and before 
setting these out it is convenient to go through the analogous argument for the 
region y* c 0. The only difference in the key equations (4.11), (4.13), (4.14) is 
that the sign of the term corresponding to A,(x) changes while the term corre- 
sponding to p2(x ,  0) remains unaltered. Of course since we are dealing with an 
asymmetric problem the two boundary layers must be solved separately and no 
simple connecting relations can be expected. If we denote the value of j5,(x) by 
f iT(x) when y* > 0 and by fin(x) when y* < 0 with a corresponding notation-for 



570 8. N .  Brown and K .  Xtewartson 

d T ( x )  and AB(x) the fundamental problem of the triple deck for a lifting flat 
plate can be stated as follows. 

Solve (4.13) with 

subject to the following boundary conditions: 

,k,+IzI as r- t -m; (4.15b) 

Q1 = 0 = ijl at z = 0, ( 4 . 1 5 ~ )  

Q,- z+AT(-2) as z++co, ~,+z+-A,(z) as z+-m; 

Q,, i j ,  are smooth for all z if x > 0; 

x i 0, while aiZ/az is discontinuous; 

(4.15 d )  

pT(x) = p,(x) if x > 0. (4.15e) 

Finally @,+a(-x)B+~, ~ B ( x ) - ~ ( - x ) ~ + O  as x+-m. (4.15.f 1 
In  the wake region a simple Galilean transformation can be made which, while 

not perhaps reducing the formidable numerical problem presented by (4.13), 
(4.15), makes it easier to see how to proceed and to understand the structure of 

(4.16) the solution. In x > 0 we write z" = - 8(x) ,  

where O(x) is an arbitrary function of x, regard Gl as a function of x,  z", and replace 
G1 by ij,+8'(x)iZl. Then (4.13) is unaltered but the boundary conditioiis in x > 0 
reduce to 

61- 121 +&[AT(x)-aB(x)] 

+ ( 9 [ ~ T ( X ) f d B ( x ) ] + 6 ' ( X ) } s g n z "  as Iz"] +m. (4.17) 

One possible choice for 8(z) is - i(m, +A,) which simplifies (4.17) but, with an 
iterative method 8s outlined below, it is undesirable to move the origin. Hence 

8(0) = 0, 8' = - ;(A;+A;) (d > O ) ,  (4.18) we shall choose 

SO that Cl - 121 i- $[By(X) -AB(x)] 

++{AT(o)+AB(0))sgn~ as 121 +a. (4.19) 

The numerical integration might now proceed as follows. Guess A,, A, in x < 0 
and AT-AB in x > 0. Using ( 4 . 1 5 ~ ~ )  determine fiT, PB in x < 0 and 17, in x > 0 
together with the values of A; +A; which make f l T  = jjB in x > 0. Then 8(x) is 
determined from (4.18). Now integrate (4.13) with these values of p 2  and 6' to 
deduce new values of .AT, X B  in x < 0 and of 2, - dB in x > 0. Hopefully this 
iterative procedure will converge to the required solution of the fundamental 
problem. Alternatively (4.15a) can be used in reverse, i.e. begin with fi2 and 
deduce A;, from ( 4 . 1 5 ~ ) .  Then AT, .AB follow by integration, the additive 
constant being determined from the known properties of d when x is large and 
negative. The last step in the cycle is to  use (4.13) to compute 17,. 
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5. The structure of the lower deck 

(a)  1x1 9 1, 5 < 0 
The elucidation of the structure of the solution of (4.13) subject to (4.14), (4.15) 
cannot proceed straightforwardly, even on an intuitive basis, because the 
behaviour of the pressures I J ,  and I J B  depends on the overall properties of d, 
and AB. However we can expect that Q(P, - @B), the anti-symmetric part of P2, 
which is zero when x > 0 and is derived from a complex function of x + i Y, has 
an asymptotic expansion for large negative x containing terms of the form 
a,( - x)*-” with n = 0,1,2, . . . . For n 2 1 the coefficients alL depend on the overall 
values of A(x) while a, = -a. Further, ;(PT + f i B ) ,  the symmetric part of @,, is, 
when x is large and negative, mainly forced by the wake growth at  large positive 
values of 2. This would imply, from I (equation (5.14)), that it  has an asymptotic 
expansion which starts with - 1.7840/3%( -x)*. The dependence of the sym- 
metric part of 17, on overall properties of B results in multipole solutions giving 
terms like ( -x)-, for integral n. Otherwise the various terms arise from the 
properties of A(x) when 1x1 is large which depend in turn on the properties of @, 
and the eigensolutions of (4.13). Finally, logarithmic terms may arise through 
a confluence of forced terms and eigensolutions. On the basis of this general 
argument we therefore assume that 

aa 1.7840 
IJT(X) = - a ( - z ) & + L - -  +O((  -x)-i), 

( -x)& 39( -x)3 

when x is large and negative and verify aposteriori that it is a consistent assump- 
tion. The constant a, is related to the unknown circulation term B of (2.2) by 

B = ~ Y h - b , ,  ( 5 . 2 )  

and in 4 6 an estimate of its value is made. 

for the region z > 0 of the lower deck can be obtained in the form 
Following the argument of 0 5 in I we now assume that the solution of (4.13) 

.ii, = z+a( -.)+HH;(~) + a 2 ~ ; ; ( r ) + a 3 ( - z ) - ) ~ ~ ( r ) + o ( ( - ~ ) - ~ )  (5.3) 

when x is large and negative. Here 

7 = 2/3 12xp, (5.4) 

and the Hk(r )  are functions of 7 satisfying the boundary conditions 

H,(o) = H;(o)  = 0, H : ( ~ ) + o  as r+m,  (5.5) 

and the differential equations 

H,” - 1Sq2HL + 9(4 - n) (yH;  - = hn(r) .  (5.6) 

Each h,(r) depends on the previous Hm(v) ,  1 < m < n- 1, and 

h,(r) = 9.2-*, h2(7) = 3 .  2-*(3H,H’; - H i 2 ) .  (5.7) 

The second and third terms of (5.1) do not affect the expansion (5.3) until we 
reach H,(r) ,  B8(r). The complementary functions of (5.6) are either exponentially 
large as ?-+a, which is inadmissible, or linear, or, except for n = 1,2,  are such 
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that their first derivative vanishes at infinity. If n = 1 one complementary 
function is O(@) as 7+00 and indeed we find that, on solving (5.6) analytically 

as 7 + m. Also 
( -$) !  2 

H;(O) = 33 ~ [ I  ( -*) !  ' 

and this gives a contribution to the skin friction that exactly matches with the 
corresponding term in (3.17). The first term of (5.8) matches with the second 
term of (4.4a) as forecast in the discussion of $ 3 .  We note that this term is 
independent of x and so persists as x --f + m and must appear in the expansion 
ofii, about x = 00. The second term of (5.8) gives a leading term in the asymptotic 
expansion of d(x)  so that 

A",(x) z a6f( -*)! ( -x)k .  (5.10) 

The same term leads the asymptotic expansion of AB(x), and it follows from 
( 4 . 1 5 ~ )  that (5.10) makes a contribution to  p,(x) which is O((-x)-g)  and 
accounts for the last term of (5.1). 

One complementary function of the equation for H2(7) is such that 

HH(7) - log7 as T-fCf3, 

and this presumably matches with the third term of ( 4 . 4 ~ ) .  This third term is 
O(1og y) as y --f 0 and hence must be matched all the way along the lower deck 
even as x+ + 00. The contribution to d,(x) arising from Hk(7) is a constant plus 
a term proportional to  log 1x1, and gives a term in $,(x) which is proportional to 

Thus, from conditions when x is large and negative, it would seem that the 
expansion (5.3) is the correct one: we shall confirm below that it is also consistent 
with the expansion as x+ +ax Through the kind offices of Dr N. Riley the first 
four equations of (5.7) were integrated numerically with the same basic program 
as was used to calculate the corresponding functions in Riley & Stewartson (1969) 
and it was found that 

x-llog (21. 

""1/ = 1-2.1539a-0.8940~2-  1*2256u3-2*2452u4- ..., (5.11) 

where cr = a/(  -z)*. I n  order to  have a smooth solution it seems important to 
prevent separation occurring in the lower deck. It is clear from (5.1) that as 
x increases from - 00 the pressure initially increases and so separation is a possi- 
bility. On the other hand the presence of the third term of (5.1) shows that the 
wake part of the lower deck provides a favourable pressure gradient which, 
although weak a t  large negative x, may well be enough to prevent separation 
i f a  is not too large. Certainly no separation occurs if cy. = 0, and it is a reasonable 
hypothesis, in view of the existence of this term, to postulate the existence of an 
a, such that if a < a, there is no separation and the triple-deck structure assumed 
here is correct, while if a > a, separation occurs and with i t  a t  least the partial 
collapse of the structure we have set up. We also postulate that a, is associated 

a x  p = o  
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with stall and define a, as the trailing-edge stall angle. Clearly the determination 
of a, is the most important end-point of the present theory but equally it presents 
a numerical problem that is beyond our capabilities at  present. A rough estimate 
of its value can however be obtained as follows. 

We compute the position of separation on the assumption that f jT(x)  is 
exactly equal to - a( -x)*. This may be done on the same lines as in Riley & 
Stewartson (1969) and we find, from (5.11), that if x = x,, u = a, at this point 
then 

0.307 < < 0.364 (5.12) 

and that the probable value of cr, is near 0.326. We now set a, = 0 and determine 
the relative contribution of the third term of (5.1) to the pressure gradient at 
x = x,. If 

a( -x$ = 2 (5.13) 

this term is only about 20% of the first term and separation is unlikely to be 
inhibited. If 

a( -x$ = 0.45 (5.14) 

the pressure gradient has been reduced to zero at  x = x3 and separation is likely 
to have been inhibited. We infer that 

0-45 < ~ : / ( 0 . 3 2 6 ) ~  < 2, 

so that 0-33 < a, < 0.41. (5.15) 

With a Reynolds number of 108 the relation (4.2) in conjunction with (5.15) 
gives an angle of incidence of approximately 2' for the onset of separation. Since 
experimentally trailing-edge stall does not occur until the angle of incidence is 
much larger, between 5" and 15', this predicted angle is much too small. The 
discrepancy may in part be explained by the fact that the observed flow is 
probably turbulent. In  turbulent flow the displacement effect is greater than in 
laminar flow, the adverse pressure gradient is thereby decreased, and the 
boundary layer will remain attached at  the trailing edge of the aerofoil through 
increased angles of incidence. 

On the lower side of the plate the pressure variation due to the incidence is 
favourable so no separation takes place there for any a. The form of the expan- 
sions for El and for $5, are similar to (5.1) and (5.3) for the upper side of the plate, 
and the asymptotic structure of the skin friction may be obtained from (5.11) by 
changing the sign of u. 

Turning now to the immediate neighbourhood of the trailing edge of the plate 
we first note that the conventional boundary-layer equations, with main stream 
as given by (3.1) with a* < 0 and O(l),  have been integrated numerically by 
Ackerberg (private communication) who finds a complicated singularity a t  
x* = 0 with an infinite skin friction there. In  our case a* is small and the inter- 
action with the main stream is likely to keep the boundary-layer properties 
finite if a < a,. We may expect, however, that as x+ 0 - the values of a.ii,/az 
as z+ 0 & are different. We denote them by AT(a) and A,(a), and for reasons 
similar to those given in I they are expected to be finite with A, < 0 < A,. 

(b f  1x1 < 1 
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Further, in view of the previous history of the boundary layers on the top and 
bottom of the plate, they will satisfy, for a > 0, 

(AB(a)I ' IAB(O)1 = = AT(o)  > AT(a)) (5.16) 

where A, is defined in I ($6). As was the case there, the pressure and pressure 
gradient should be bounded as x+ 0 - , but as x+ 0 + the pressure gradient is 
O(x-9.) which is necessary to prevent p ( x )  from being singular at  x = 0 + . The 
transition of the solution from x = 0 - to x = 0 + is achieved by a generalization 
of the Rott & Hakkinen (1965) wake solution. We suppose that the velocity 
profile at x = 0- is 

i i i i , (O - , z )  = a,(z) with a ; ( O  + ) = A,, aL;(O - ) = A,, 

where a,(z) is to be computed, and also 

d@&lx is finite at x = 0 - , and dp,/dx M Cox-$ as X+ 0 t 

where C, is a constant to be found. Then, if, near z = 0, 

(X > 0), G,(X,Z) = &(&x); Gh(7) 

G,(q) satisfies G{ + 2G0 G," - Gh2 = 27C0 29, 

with boundary conditions 

G6(7)-18AT7+0 as q+m, 
G6(7)-18ABq+0 as ~ - + - c o .  

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

These conditions ensure that the velocity profile (5.19) matches with (5.17) as 
x+ 0 + . This could of course be achieved if finite constants replaced the zeros on 
the right-hand sides of (5.21), but the additional restriction that these constants 
must be zero is necessary to ensure that x,(x) and &(x) are bounded as x --f 0 + . 
A discussion of this point is made in I ($6)  for the special case A, = - A,, and the 
conclusions reached there are also applicable here. 

Solutions of equation (5.20) with boundary conditions (5.21) have been kindly 
obtained for the authors by M i  P. G. Williams for a range of values of the positive 
parameter - &/AB. The results are given in table 1, where q0 is defined to be the 
value of 7 at which Go vanishes. 

- & c / b  1 .o 0.8 0.6 0.4 0.2 0 

4% 0 0.017 0.040 0.070 0.109 0.164 
@&a)/@ 4.28 4.03 3.86 3.82 4.02 4-44 
Col G 0.409 0.351 0.287 0.213 0.124 0 

TABLE 1 
~ 

If A, < 0 the governing equation has no solutions since Go < 0 for large enough 
positive 7 and the method of solution completely breaks down in the neighbour- 
hood of x = 0. Part of the reason is no doubt connected with the change in the 
direction of propagation of small disturbances, but at the present stage of 
development of the theory any attempts to overcome the difficulty are bound 
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to be speculative especially in view of the singularity at separation, which has 
also to be dealt with, and so we shall not pursue the matter. 

Returning to the case AT > 0 we see that the streamline from the trailing edge 
is given by q = qo, so that it has a vertical tangent there, and in addition the 
streamwise component of velocity on it is proportional to x+. Its subsequent 
behaviour probably needs a complete numerical integration for elucidation but 
we note that as in the symmetrical problem, even if 42, and p2 are completely 
known, the form of G, downstream is not fully determinate and depends on an 
infinite set of arbitrary constants. The reason of course is that d(x) near x = 0 is 
not entirely dependent on the local values of P2(x), and in addition to the arbitrary 
constants mentioned in I ($6)  there will be others associated with 8(x) as 
introduced in (4.16). 

Finally, we consider the properties of the solution when x & 1. Here it seems 
that the Goldstein solution for the inner wake (Goldstein 1930) is appropriate 
together with the transformation (4.16). For large x we write 

G, = g(gx)+g;(v)+ ... , 

( c )  1x1 3 1, IL: > 0 

(5.22) 

the dots denoting terms which are smaller when x is large, and 

(5.23) 

Here go satisfies the same differential equation (5.20) as Go, except that Co = 0, 
together with boundary conditions 

go(0) = g:(O) = 0, g:(oO) = 18, (5.24) 

and 8(x) is defined by (4.18). Physically this means that the lower deck terminates 
in a wake which is similar to that for a symmetrically disposed plate except that 
it is displaced a distance 8(x) upwards due to the upwash of the inviscid flow 
behind the inclined plate. From the relation between q ( x )  and P2(x) and the 
property f jT  = jiB where x > 0 we have 

qX) = +m*+2aa,x4+..., (5.25) 

when xis large, which is in accord with the above physical description of the flow. 
The properties of the Goldstein inner wake imply that 

$[AT(x)-AB(x)] = 1*416($~)*+ ..., (5.26) 

which gives a pressure decaying like x d  as x + 03 as in the symmetrical situation. 
In  order to determine further terms in (5.25), (5.26) we set up an asymptotic 
series for G, in descending powers of x, and ultimately of logx also, whose 
coefficients are functions of 7, the leading term being given by (5.22). Were it 
not for the boundary conditions due to the asymmetry of the problem the 
structure of this series would be the same as that in I ($5) and so we shall con- 
centrate on the asymmetrical features which are in fact dominant. Of these the 
most important arises from the term u~(y) in (4.4a) which behaves like ly[Jsgny 
as y+O and which matches with (5.3) when x is large and negative. Since it is 
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independent of x it must match with the asymptotic series for 4, when x is large 
and positive. This can be achieved by taking the first two terms of the series for 
$2, as 

(5.27) 

where g1 satisfies (5.28) 

together with the boundary conditions 

(5.29) 

where d, is a constant which we now determine. The contribution to the asymp- 
totic expansions of both AT(,) and %(x) from the term in d, is 

(5.30) 

and we now obtain d, by noting that (5.30) in conjunction with (5.10) and the 
identical result for AB(x) gives a contribution to the pressure which must vanish 
for large positive x. Hence 

d, = 2*3%(-$)!. (5.31) 

The solution of (5.28) may now be obtained uniquely and we find after numerical 
integration that gl(0) = 10.0, g;(O) = 46.0. The consequent contribution to O(z) 
is O(x*) and is, as anticipated, smaller than both the terms in (5.25). Further 
terms in the expansion of El may be found if necessary, but we shall not pursue 
the matter beyond noting that it will involve an infinite set of arbitrary constants. 

6. An approximate solution for the antisymmetric part of the pressure 
At the end of $ 4  we outlined a possible procedure for the numerical solution of 

the fundamental problem presented by (4.13), (4.15), and in view of the con- 
siderable complexity of such a computation we feel it worthwhile to derive an 
approximate solution which would yield the antisymmetric part of the pressure 
and the symmetric part of the function A,(%). This is made possible by the fact 
that p,(x) = PB(x) in the wake so that the antisymmetric part of the pressure, 
& ( f j T - j 3 B ) ,  is zero for x > 0. Equations (4.13) become tractable if they are 
linearized about the shear flow with which Q,(x,z) merges at the outer edge of 
the lower deck. The resulting equation should yield a solution exhibiting the 
main properties of the flow if it is regarded as valid for x < 0 only, since it is not 
expected that the linear shear is a good first approximation in the wake. The 
method of Wiener and Hopf then enables the functions &(pT - PB), $(AT + AB) to 
be determined for all x, the former vanishing for x > 0, from a solution for the 
boundary layer over the plate which is independent of the boundary layer in 
the wake. 

Denoting by fi,(x,z), iiB(x7z) the values of E,(x,z) for z > 0 and z < 0 
respectively, we write 

$2,(x, 2) = + GT(x, z), f i B ( 2 ,  z )  = + GB(x, z), (6.1) 
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where 2 = 1x1, in the appropriate forms of (4.13), neglect the non-linear terms 
and subtract to obtain 

The fundamental equation, which is to be considered for x < 0 only, is then 
obtained from (6.2) as 

a2w a3w 2- - - adz - a 2 3  
(x < O),  

where w = B(GT - GB),  and is to be solved subject to the conditions 

a2w 
a22 = &(XI on z = 0 ;  W + * ( ~ ~ + A " ~ )  as Z+W. (6.4) 

Here &(x) = id($?, - pB)/dx,  and the boundary condition as 2 --f 00 follows from 
(4.15d). 

If the Fourier transform of w(x, 2) is denoted by W ( w ,  2)  so that 

then, since w(x, 2) satisfies (6.3) for x < 0, we have 

The function &+(w) is the Fourier transform of &(x), and the suffix plus indicates 
that it is a regular function of the complex variable w for Rew > 0 since we 
require that &(x) _= Ofor x > 0. The solution (6.6) satisfies the boundary condition 
on 2 = 0 for x < 0, and contains the additional function M-(w,Z) regular for 
Re w < 0 as the equation and boundary conditions satisfied by w(x, 2) for x > 0 
are unspecified. The parameter 6 is introduced for convenience and the limiting 
process 6-t 0 + will be made in conclusion. The branch of the cube root in (6.6) is 
to be chosen so that the argument of the Airy function has positive real part as 
Rew-t +m. 

A relationship between a+(@) and c ( w ) ,  which is defined to be the Fourier 
transform of +#(AT +AB)/dx2, is obtained from the upper deck. With an obvious 
extension of the notation of (4.7), (4.8) we have that in the upper deck 

a a 
- (P2T - -%?) = - ;iX (%!F + KT,') ( y 2 o), (6.7) 

and that PZT - PzB is harmonic in the variables x and Y.  Thus if Q2(w, Y )  is the 
Fourier transform of ia(P2T- PZB)/ax we obtain, using (4.9), 

aY 
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The factor A-4 is required since &(x) = A*pz(x, 0). If we now differentiate (6.7) 
with respect to x and let Y -+ 0 we deduce that 

1 a3  

a Y 2 ax3 aQz = h-*--(A,+&). 

Finally, combining (6.8), (6.9), we have 

- IwI &+(w) = iOC(O), (6.10) 

We are now in a position to apply the second of the boundary conditions (6.4). 

(6.11) -w2~(x ,Z )+C(o)  as Z+m, 

where C(w) is the transform of &l2(.& + AB)/dx2. 

It becomes 

so that, from (6.6), 

(6.12) 

The function c(o) may now be eliminated between (6.10) and (6.12), and, if 1 0 1  
is replaced by (w  - iS)* (w + is)$, the result of the elimination is 

Cj+(w) K+(w) = y e+(w - i 6 ) Q ~ - ( w )  ~ - ( w ) ,  (6.13) 

where (6.14) 

and 0 < y = - 3Ai’ (0) = 33/( - #)!. (6.15) 

Equation (6.13) has been written with the left-hand side regular for Rew > 0 
and the right-hand side regular for Re o < 0 on the assumption that the factoriza- 
tion (6.14) has been made. We now make the additional assumption, which may 
be justified aposteriori, that the region of regularity of the left-hand side of (6.13) 
may be extended to Re w > - 6, and that of the right-hand side to Re w < 6. The 
two sides are now equal and regular on a dense set of points, so, by analytic con- 
tinuation, together they define a function which is regular everywhere. Before 
proceeding further it is convenient to perform the factorization of K(w). 

The function K(w) is regular and non-zero in the w plane cut along the positive 
imaginary axis from i6 to ico, and along the negative imaginary axis from - is 
to -iw. The factorization is carried out in t’he usual way (see, for example, 
Noble 1958), and we obtain 

K’(w) 11 2y a* da + -. (6.16) -- 
K J w )  - 6(w-i6) 377’b/o (y2-3*ya%+&)(a+iw)’  

and (6.17) 

We shall require in particular the values of K-(w), K+(w) for w = - itya, w = isyt 
respectively where t, s are real and positive. They are 

(6.18) 
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and O0 d l o g ( a + s ) d v  K+(isyf) = - sB exp 

where the arbitrary multiplicative constant is chosen so that 

(6.19) 

(6.20) 

We are now in a position to return to (6.13). We set both sides equal to a 
constant D so that m eiwx 

Q(x) = 21 - dw. 
2~ -mK+(w)  

(6.21) 

Since K+(w) as given by (6.17) is regular and non-zero for Rew 2 0 and is 
asymptotic to w as IwI-too, we see that &(x)  = 0 for x > 0 as required. Once 
a+(@) is known 6 ( w )  is given by (6.10) and (aG/aZ)l,=, by (6.6). With the use of 
(6.14) where necessary the three Fourier transforms are inverted to give 

= o  if x > 0 1  

Here I ( t ) ,  J ( s )  are the integrals appearing in (6.18), (6.19): 

4 J 'X  vJlog(a+s) 
J ( s )  =- da 

377 0 l+d 

(6.25) 

(6.26) 

No expressionfor (aw/aZ)I,=;,for 2 > 0 is givenin (6.24) since the original equation 
(6.3) only determines w for x < 0. The constant D will be determined by the 
requirement (4.15f) which gives 

(-x)Bd(pT-@B)/dx+cx as x-+--oo. (6.27) 

In order to deduce the forms taken by (6.22)-(6.24) for large and small 1x1, we 
require the asymptotic expansions of I ( t ) ,  J ( s )  for small and large values oft, s. 
Since we find, from (6.25), (6.26), that 

I ( t )  - I( t -1)  = 8 log t ,  (6.28) J ( s )  - J(s-1) = + logs, 

we need only consider small values of the variables. The results are 

77 t4 t 2  t% 24 7r t4 

8 3t 2% 2 3 8 3n 
I ( t )  = 2!it cos- - - -- +--- t3sin +- (logt - i) + O(t5).  (6.29) 

n 2 4 s2 24 n 5 4  

8 34 24 3 8 3n 
J ( s )  = 24s cos- --ss +-- - -s3sin - - - (logs - 2) + O(s5). (6.30) 

37-2 
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We now determine the constant D by using (6.22), (6.27),  (6.29) and obtain 

S. N .  Brown and K .  Stewartson 

(6.31) 

The quantities 4($jT-$jB),  h(6,+AB) are obtained from (6.22)) (6.23) by 
integration. The arbitrary constant in the integration of (6 ,22)  is determined by 
the requirement that the pressure be continuous a t  x = 0. Of the four arbitrary 

- 4  0 4 
2 

FIGURE 1. The function O(s)/a. 

constants that arise from (6.23),  two are used to ensure that and 
&i!(AT+AB)/dx are also continuous a t  the trailing edge, while with one of the 
remaining two we require that @(A5, + 2 B ) l d x - t  0 as x -+ - co to  comply with 
(5.10). The fourth constant is presumably determined by the constant in the 
asymptotic expansion of HL(7) as 7 +a3 in (5 .3) ,  and is not at our disposal. How- 
ever, since a2HL(q) represents a non-linear contribution to  G, in (5 .3 )  and the 
solution of this section embodies only the linear features of the fundamental 
problem of the trailing edge, we shall not match these two constants. The function 
plotted in figure 1 is O(x)/a with the definition of (4.18) extended to x < 0. For 
x > 0, O(x) represents the deviation from the centre-line of the streamline that 
comes off the trailing edge of the plate. At x = 0, 8(x) = 0 and O'(z) is bounded, 
though O"(x) is logarithmically infinite. 

The resulting expressions for ( f j T  - f jB) /2a ,  (2a)-l {(aQ,/az), + (X i l /~z )B}z=o  are 
illustrated in figure 2. As for O(x), expansions were found for small and large 
values of 1x1, and the integrals were evaluated numerically for intermediate 
values of x. For large 1x1 the expansions follow easily from (6 .29) ,  (6.30) and we 
note the first few terms here in order to compare the results with the predictions 
Of $ 5 .  

If  x is large and negative the appropriate forms are 

cos - + -+ ( - x)-g + o( ( - x)-s) ( 4 - 4  77 ( -L)!  

29ys 8 6 b 3 ~  

&(AT+AB) = a{66( -4 ) !  (-z)h+0(1)}, (6.33) 
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and 

(6.34) 
while for x > 0 

1 (6.35) 
24x4 7.f 2% $(A,+&) = -a! # x " + c o s ~ - ~ ( - ~ ) ! x 1 + O ( l )  . ( Y$ 

X 

- 12 -8 -4 0 

- 
I1 

- 

- -3 

I I - 4  

FIGURE 2. I, The anti-symmetric pressure (j5, -p",)/2a; 11, The symmetric skin friction 

This linearized solution of the problem of the  trailing edge is consistent with, and 
gives confidence in, the structure set out in the preceding sections. Comparison 
of (6.32) with (5.1) gives an estimate of the previously unknown constant a, as 

a, = 2-gy-s ~ 0 ~ 4 7 . f  = 0.7898, (6.36) 

and then the two expressions are seen to agree except for the additional term 
O((-x) -%)  in (5.1). However, as this arises from the symmetric part of the 
pressure it is automatically excluded from (6.32). Similarly, we may compare 
(6.33) with (5.10)) and (6.34) with (5.3) and (5.8). Finally, we note the agreement 
between (6.34) and (5.25) and (5.31). 

The constant a, of which we have an estimate in (6.36) is related to the cireula- 
tion term B of (2.2) by (5.2), and the assumption of $ 3  that B = O(s3Z) is seen 
to be justified. Thus there is a stagnation point of the outer inviscid flow on the 
upper side of the plate a t  a distance from the trailing edge given by 

- x* / l  = s7a2f&2,h--a. (6.37) 
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7. Supersonic trailing edges 
It is of interest to compare and contrast the results for incompressible flow 

with those for supersonic flow. We suppose that the flat plate is fixed in a com- 
pressible fluid which has Mach number M, > 1 at an infinite distance upstream. 
Thus at the leading edge of the plate an expansion fan is formed on the upper side 
and a shock on the lower side. According to inviscid theory the slip velocity and 
pressure on the plate are given by 

(7.1) 
Ul(x*) = Um+U,a*sgny*I(M2,- 1)6, 

p* = pm - U: ,om a* sgn y*/(M$ - I)+. 

At the trailing edge a triple deck similar to that in incompressible flow is set up, 
the main difference arising from the inviscid-flow properties in the upper deck 
where the governing equation is the linear wave equation instead of the potential 
equation. The structure in fact is the same as that proposed by Stewartson & 
Williams (1969) for the closely related problem of self-induced separation and 
which is based on ideas introduced by Lighthill (1953). We write for y* > 0 in 

as in (5.11)-(5.15) of Stewartson & Williams (1969), where T, is the wall tem- 
perature, T, the temperature at infinity, and C is Chapman's constant which 
occurs in the linear viscosity law 

plpm = CTITm, C = p?J,T,/pu, T,, (7.3) 

discussed in Stewartson (1964, p. 35), for example, and ,u is the coefficient of 
viscosity. With these assumptions the fundamental boundary-layer equation for 
the region z > 0 is the same as (4.13). The boundary conditions in x < 0 are the 
same as in (4.14) the only difference being the relation between YT(x )  and AT(%). 
Instead of (4.15a) we now have 

the difference being due to  the change in structure of the upper deck and to the 
fact that on leaving the triple deck in the upstream direction AT tends to zero 
but &, is given by (7.1). Similar results hold for the lower deck with some sign 
changes analogous to (4.15) [e.g. f jT(x)  is replaced by - g B ( z )  in (7.4)]. 
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The form of the two lower decks in supersonic flow is quite different from that 
in incompressible flow because now there is no possibility of the solution at a 
particular station of x directly affecting what happens farther upstream. Instead, 
on both the top and bottom of the plate, there occurs a self-induced flow due to 
the non-uniqueness of the governing equation (4.13) when subject to the condi- 
tion (7.4). Some properties of this solution were discussed in Stewartson & 
Williams (1969) where it was shown that for a rising pressure the only disposable 
parameter is xo which fixes the position of separation. In the present problem, 
if a* = 0, we need the other solution in which the pressure falls as x increases so 
that the skin friction increases. At the trailing edge the skin friction is greater 
than that given by Blasius and is the same on the upper and lower sides of the 
plate. Just downstream of the trailing edge the Rott & Hakkinen (1965) simi- 
larity solution holds in the neighbourhood of the line z = 0 with pressure gradient 
proportional to x-*. Consequently AT(,) and @,(x) vary linearly as x+ 0 + but 
their second derivatives are singular. The formal solution is then continued by 
forward numerical integration and proceeds until, as x -+ co, the Goldstein wake 
is approached with pressure gradient proportional to 5-4. Presumably the dis- 
posable parameter in this solution that fixes the pressure at  x = 0 - is determined 
by the condition that @,(x) -+O as x-+co. 

When a* > 0 it is clear from (7.4) that the crucial parameter is a, where 

a* = €2C*h+(lM2, - l)*,,. (7.5) 

If a, < 1 the effect of the inclination of the plate to the main stream may be 
neglected in comparison with that due to the trailing edge. If a, = O ( l ) ,  then 
there are two disposable constants xT and xB fixing the self-induced solutions of 
(4.13) on top and on the bottom of the plate. On the lower side the pressure will 
fall, and the appropriate solution is the same as for the trailing edge of a sym- 
metrically disposed plate though xB =l xo. On the top the pressure depends on 
the value of a, and may fall or rise. The difference X, -xB is determined by the 
condition that g T ( 0 )  = FB(0). Thereafter the same procedure is used as when 
a, = 0 and xT is determined by the condition @,(a) = 0. If the pressure rises 
there is a possibility of separation on the upper side and once this occurs the 
development of the flow is not clear. Although the separation is not accompanied 
by a singularity as explained in Stewartson & Williams (1969, § 9), the equation 
of Rott & Hakkinen (1965) does not appear to have a solution when reversed 
flow has occurred on one side of the plate. A further point to note is that it  has 
not yet been determined what ultimately happens to the self-induced solution 
in which the pressure decreases with increasing x. It appears possible that 
p(x )  -+ - 00 as x -+ co but further numerical work is required before firm conclu- 
sions may be drawn. All we can confirm at the moment is that separation occurs 
when a*, the angle of incidence of the wing, is such that 

C(M2,-1) t 
a* N 

in contrast to the result a* = O ( R 4 )  in the incompressible case. 
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Finally we observe that, if the compressible flow is subsonic rather than super- 
sonic, the appropriate scaling in the triple deck is the same as (7.2) except that 
(M2, - 1) is replaced by (1 -M2,) .  In  addition, in (3.1), a* is replaced by 
a*/( 1 - M2,)a. The condition for separation then becomes 

We wish to  thank Dr R.C.Lock for a helpful discussion on the nature of 
separation. 
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Diffraction of shock waves by a moving thin wing 
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New York University, Bronx, N.Y. 
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An analytical solution is obtained for the flow field due to the impinging of a 
plane shock wave of arbitrary strength by a thin wing moving in the opposite 
direction. The planform and the thickness distribution of the wing can be 
arbitrary and the speed of the wing can be either supersonic or subsonic relative 
to the undisturbed stream ahead of the shock or to that behind the shock. The 
solution is a generalization of the previous solution of Ting & Ludloff for the 
diffraction of shock wave by a two-dimensional stationary airfoil to a three- 
dimensional wing moving with supersonic or subsonic speed relative to the 
stream ahead of or behind the shock. The solution is employed for the analysis 
of the changes in aerodynamic forces when an airplane encounters a blast wave 
or a shock wave of another airplane. It is also used to study the diffraction of 
a shock wave or an N-wave advancing over flat terrains. 

1. Introduction 
The variations in aerodynamic forces on an airplane, when it encounters 

a shock wave due to an explosion or that of another vehicle nearby, are of 
practical interest (figure 1 (a)). The problem of the diffraction of a shock wave 
or an N-wave advancing over a flat terrain is an area of interest in the current 
sonic boom investigations (figure 1 ( b ) ) .  The second problem can be considered 
as a special case of the first one, i.e. the diffraction of a shock wave advancing 
over a stationary symmetric thin wing. In this paper, analytical solutions for 
both problems are presented. 

The solution for the conical flow field due to the diffraction of a shock wave 
advancing over a stationary thin wedge was obtained by Lighthill (1949). 
Extension to stationary wedges at  yaw and to wedges moving head on with 
supersonic speed were obtained by Chester (1954) and by Smyrl (1963), respec- 
tively. Additional conical solutions have been developed by Blankenship ( 1965) 
for the diffraction of a shock wave by a slender cone moving with supersonic 
speed and by Ter-Minassiants (1969) for the diffraction of an oblique shock wave 
and its regular reflected wave by a small corner. 

The solution for the diffraction of a shock wave by any stationary two- 
dimensional symmetric thin airfoil was obtained by Ting & Ludloff (1952) 
directly as a solution of the two-dimensional wave equation. The same method 
was applied to astationary slender axially symmetric body by Ludloff & Friedman 
(1952). The boundary condition for the disturbance pressure p' on the airfoil or 
the body behind the shock was fulfilled by an appropriate source distribution. 
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The homogeneous boundary condition across the shock, DZtp' = 0, is replaced 
by an equivalent boundary condition or a fictitious source distribution on the 
plane of the wing or along the axis of the body ahead of the shock. The fictitious 
source distribution is related to the given source distribution behind the shock 

Ground 

(b) 
FIGURE 1. Diffraction problems: (a)  diffraction of shock by a moving wing, 

(b )  shock wave advancing over a flat terrain. 

by a linear transform of the independent variables. The final solution is given 
by the known integral solution for unsteady linear source distributions. 

Following the formulation of Ting & Ludloff (1952), Arora obtained analytic 
solutions for the diffraction of a shock wave by a slender body (1968) and by 
a planar symmetric thin wing (1969). The solutions of Arora, which were ob- 
tained by a different procedure using Laplace and Fourier transforms, can again 
be recognized asintegral solutions of unsteady axial or planar source distributions. 
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In  the present paper, the procedure used by Ting & Ludloff (1952) is extended 
to the unsteady three-dimensional problem, i.e. the diffraction of a shock wave 
by a moving planar symmetric thin wing. The governing differential equations 
and the boundary conditions are formulated in 9 2. The shock condition is now 
of the form D,,p’ = KC2pA,zoz., where C is the speed of sound behind the shock. 

The inhomogeneous term is due to the disturbed pressure pA created ahead 
of the shock by the moving wing. The pressure &, is given by a steady flow 
solution without the shock and with the speed of sound the same as that of the 
stream ahead of the shock, C,. In  the appendix, a steady solution for an equivalent 
wing moving in a stream without a shock and with the speed of sound C can be 
found so that the corresponding disturbance pressure p* creates the same in- 
homogeneous term in the shockcondition, i.e. D,,p* = KC2&, zozo. The difference 
between the disturbance pressure behind the shock, p’, and p* obeys the homo- 
geneous shock condition and is obtained in $ 3 by an extension of the procedure 
of Ting & Ludloff (1952). The complete analytic solution is given in $ 4  to- 
gether with a list of the relevant symbols. A physical interpretation of the 
individual terms in the solution as integral solutions for moving planar source 
distributions is also presented. In $ 5 the analytical solution is reduced to a sum 
of ‘quasi-steady ’ three-dimensional solutions, so that it is easier to carry out 
the integrations for a given wing. Furthermore, from the planform of the wing, 
a domain of influence of the shock can be defined, and outside that domain the 
analytic solution can be reduced to the sum of at most two steady three-dimen- 
sional solutions. In $6,  the integrals are evaluated for a simple semi-infinite 
swept back wing so that explicit solutions are presented. By the superposition 
of these explicit solutions, solutions for wings with complicated planforms and 
thickness distributions can be obtained in the same manner as in the steady 
flow problems (Donovan & Lawrence 1957). Several numerical examples are 
included, e.g. the diffraction of a shock wave by a flat terrain in the shape of 
a pyramid and the variation of the lift and drag of a triangular wing with super- 
sonic edges impinging on a shock wave. 

It should be pointed out here that the solutions of Smyrl (1963) and Arora 
(1968, 1969) are restricted to bodies or wings moving at supersonic speed relative 
to the flow ahead of the shock. The analytic solution presented in this paper is 
valid regardless of whether the wing is moving at  supersonic or subsonic speed 
relative to the stream ahead of or behind the shock. 

2. Formulation of the problem 
Figure 1 (a)  shows a thin wing lying in the x-z plane and impinging head on to 

a plane shock wave moving in the direction of the x-axis. The undisturbed flow 
ahead of the shock is at  rest with pressure Po, density po and speed of sound C,, 
or (yPo/po)*. The shock front is advancing with velocity U, and the undisturbed 
uniform stream behind the shock is moving with velocity Uo - U, pressure P and 
density p and speed of sound C or (yP/p)*. Relative to the shock front the Mach 
number ahead of the shock, No = Uo/Co and that behind the shock, M = UlC, 
are related by the normal shock condition (Liepman & Roshko 1957) with 
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Mo > 1 and M < 1. Likewise the pressure ratio, density ratio and the ratio of 
speed of sounds are related to M, or M (Liepman & Roshko 1957). 

The thin wing is moving in the direction of the negative x-axis with velocity 
U, relative to the undisturbed stream ahead of the shock. The velooity U, can 
be supersonic or subsonic relative to C,. The velocity of the wing relative to the 
undisturbed stream behind the shock is U, + U, - U ,  which can be either super- 
sonic or subsonic relative to C. 

For a symmetric wing at  zero angle of attack, the disturbed flow is symmetric 
with respect to the variable y. It sufices to consider only y 2 0. With E as the 
small thickness parameter, the linearized disturbance pressure, density and 
velocity components behind the shock will be denoted by ep', ~ p ' ,  cur,  EV' and EW' 
respectively. For the regions ahead of the shock, these disturbance quantities 
will be represented by the same symbols with subscript 0, namely, ep;, cp;, EU;, 

EVA and cw;. 
The linearized boundary condition on the plane of the wing is 

ev' = e(Ul+U,- U) fzo(xo ,z )  for xo < (Ul+Uo)t, (2.1) 

and ez(, = eU,fz,(xo,z) for xo > (Ul+Uo) t ,  (2.2) 

where xo is fixed on the wing surface and y = f (xo,  z )  represents the upper surface 
of the wing inside the planform S. Outside the planform S, f(x,, x )  vanishes. 

Since the shock front is moving with supersonic speed (M, > 1) relative to the 
undisturbed stream ahead of the shock, the presence of the shock will not in- 
fluence the flow field ahead of it. The flow field ahead of the shock is therefore 
a steady isentropic flow in variables x,, y, 2. The governing equations are, 

(2.3) i POUIUi = -PA, Po~l(v;)zo = - (P;)W 

Po u4),o = - (p;)z, CiP6 = Pi, 
(M2, - 1) (Pi),,z,- (P&U - (P&z = 0. 

The boundary condition (2.2) yields a condition for 
the region ahead of the shock is given by the integral, 

and the solution for 

For the subsonic case 31, = U,lC < 1, the domain of integration is the planform 
of the wing and v = 2. For the supersonic case M, > 1, the domain of integration 
is the part of the planform of the wing inside the hyperbola, 

5 < xo-{(M:- 1) r(z-g)2+y2]),t. 

For the region behind the shock, the flow field cannot be reduced to a steady 
flow and will be a function of time t and three variables x, y, z .  The co-ordinates 
are fixed on the undisturbed flow behind the shock. The linearized governing 
equations are, 

(2.5) 
p;+p(uj,+vj+w;)= 0, 

pu; = -p;, pv; = -pi ,  pw; = -p;,  p; = c2p;. 
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By straightforward elimination, it is found that the disturbance pressure fulfils 
the simple wave equation 

while the other quantities fulfil the equation (a/at) ( 0 9 )  = 0, where g stands 
for u’, v’, w’ or p’. 

With (2.6) serving as the governing equation for p‘ the next step is to state 
the initial conditions for the region behind the shock, i.e. x < Ut.  

If the wing is moving at subsonic speed (H, < 1) relative to the stream ahead 
of the shock, the initial conditions are 

p’(z < Ut, y, x ,  t )  + 0, pi(x < Ut, y, z, t )  + 0 as t+ - co. (2.7) 

p‘(z < Ut,y,z, t)+O, as (z2+y2+~2)~--tco. (2.8) 

The boundary condition at  infinity is 

For a stationary wing (U, = 0) or a wing moving with supersonic speed (U,/Co > 1) 
the initial conditions and the boundary condition at infinity can be sharpened 
but it is not necessary to impose these sharpened ones instead of (2.7) and (2.8). 

With xo related to z by the translation x,, = x + (U, + Uo - U )  t ,  the boundary 
conditions (2.1) and (2.5),  yield a condition for p i  

Pi@ < Ut,  o+, 2, t )  = -p(U,+ Uo- u)2fzozo(zo, 2 ) .  (2.9) 

Relative to the undisturbed flow behind the shock, the air in front of the shock, 
the wing and the shock front are moving with velocity - (Uo - U ) ,  - (U, + Uo - U )  
and U ,  respectively. The disturbed shock front can be expressed by the equation, 

(2.10) z = Ut + €$(y, 2 ,  t )  + 0 ( € 2 ) .  

Under the framework of linearized theory, the unit normal vector 2 and the 
shock velocity q 2  are related to $(y, x ,  t )  as follows, 

A 

(2.11) 1 ?L = .t”-€$,j-€$,Z, 
q.2 = ( U  + €$J i - eU$J - €U$& 

V’(X = Ut,  y, 2 ,  t )  = V&l = (U, + UO) t ,  y, 2 )  - (Uo - U )  $.,(Y, 2 ,  t ) ,  

The continuity of tangential components of velocity across the shock yields 

(2.12) 

w’(z= U t , y , ~ , t )  = W ; ( X O  = (U,+Uo)t ,y ,Z)-(Ci , -U)$~(y,z , t ) .  (2.13) 

Solution of the continuity, normal momentum and energy equation across the 
shock for p’, u’ and p’ yields 

C2p’(x = ut, y, 2,  t )  = (1 + Qo)p‘(2 = Ut,  y, 2 , t )  

pCu’(z = Ut,  y, 2 ,  t )  = Q,p‘(z = Ut, y, 2, t )  
+ fi,p;(xo = (U,+ 7x0) t ,  y, z),  

+ pCu&% = (U, + UO) 4 y, 2 )  

+fi&(zo = (Ui+Uo)t,y,z), (2.14b) 

(2.14a) 

p(U - Uo) $t(y,  2 ,  t )  = %P’@ = Ut,  Y, 2,  t )  

+ P(U- uO)u;(x, = (U, + UO) t ,  Y, 2 )  

+ Q2,p&o = (U,+ uo) t ,  y, 21, ( 2 . 1 4 ~ )  
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- (y -  1)  (M2- 1)2 

[2 + (y - 1) M 2 ]  ’ where Q, = M 2  

a1 = [ (3y- l )M2+3--] / [2+(y- l )M2] ,  
Q2 = - (1 - M2)/2M2, 

a3 = ( y  - 1) ( M i  - 1) ( I  - M2)/M2[2 + (y - 1)  M2], 

Q4 = - { y+  l+M,2[2(y- l)M2+3-y])/[2M2(y+ I)], 
Q5 = - [r- 3 - 2(y - 1) M 2  + (y  + 1)  M;(2M2 - 1)]/[2M2(y + I)]. 

By using differential equations (2.3), (2.5), (2.6), the boundary conditions across 
the shock x = Ut can be reduced to a single condition on p‘, 

5) 

K = - [(B, + B1)2 [Q, - BO/(BI M ) ]  + (M2, - 1)  [Q, - (M-l+ Mil) B,] MI, 

and D ,  is the linear differential operator defined as 

(2.16) 

The differential operator Dz,t is identical with that of the two-dimensional 
problem (Ting & Ludloff 1952). The inhomogeneous term is the contribution 
due to the disturbances created by the moving airfoil ahead of the shock. 

The boundary conditions along the shock and that along the body surface 
creates a discontinuity in pl/ at their intersection, i.e. x = Ut,  y = 0. Along the 
shock, (2.12) yields 

(U - U,) $k1/(0+, 2, t )  = d ( X  = Ut-, o+, z, t )  - v;(x, = (U, + U,) t+, o+, x ) .  

Since the velocity components are continuous on either side of the shock near 
its intersection with the body, (2.1), (2.2) and the preceding equation give 

( ~ - U o ) & ? t ( 0 + > z A  = (9+Uo)(Uo- ~ ) f , , z o ( ~ o  = ( 9 + - o ) t > z ) .  

From ( 2 . 1 4 ~ )  along the shock, the following is obtained: 

p i ( .  = U t , y  = O + , z , t )  = L4(7+ 1 ) - 1 p ( ~ i f U o ) + p o U ~ ~ ~ / ~ 2 1 f ~ o ~ o [ ( U o + U ~ ) ~ , Z ] .  
(2.17) 

On the other hand (2.1) implies 

ph(x= Ut-,y = O , Z , t )  = - p ( U ~ + U ~ - ~ ) 2 f z o z , [ ( U ~ + U l ) t , ~ ] .  (2.18) 

Equations (2.17) and (2.18) define the discontinuity in pb behind the shock at 
its intersection with the body. It should be pointed out that in the neighbour- 
hood ahead of the shock there is no such discontinuity in P ; , ~  since the solution 
p;  is not influenced by the presence of the shock. 

The moving front, x = Ut,  suggests the introduction of new variables Z, jj, 2 ,  i 
from the old variables by the Lorentz transformation (Ting & Ludloff 1952). 

(2.19) 
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The region behind the shock, x < Ut, becomes the region Z < 0. In  this region, 
the wave equation remains of the same type, 

p;*+p;g+p;z-p,;t = 0. 

The initial conditions are 

(2.20) 

P I = &  = 0, as $-+-a. (2.21) 

The boundary conditions become 

pl+O, as ZJ+ij2+22+m, 

p@, 0) z, t )  = pc~Aofxozo  [20 = a(t+Xo3), 21, 

i&pI(Z = 0, g > o,x, H) = Ep~oxo[xo = lit; g > O , f ] ,  

pk(Z = 0-, g = 0) z, E )  = pC%40fzoxo [xo = a, 21, 

&(Z = 0, g = o+, z ,  H) = pC2pfzox0 [xo = is, Z], 

a = (lZl + go)/( 1 - M2)+, go = uo/c, 
x, = M+(1 -N2)/(lZo+BJ, Bl = U1/C, 

and 

where 

A ,  = - (B1+Zo-N)2, 

p = -4M(2.@l+.@~)/(y+ 1) -!-N2,M!&/(.@,ofi2), 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

E = -2M(1-M2)-~{(lZo+al)2[fi4-ao/(MMl)] 

+M(M2,-1) [fi ,-(M-l+B~l)Bo]},  (2.32) 

and Q2, Q4, Q5 are defined by the equations following (2.14~). Equations (2.20) 
to (2.26) summarize the mathematical formulation of the problem. 

3. The analytic solution 
The solution for the wave equation, (2.20) subjected to the initial condition, 

(2.21), and the boundary condition a t  infinity, (2.22), can be related to its normal 
derivative on the plane = 0 by the Kirchhoff formula (Baker & Copson 1950), 

where 7 = [(Z - t;)2 + ?j2 + ( 2  - 5)2]4. The region where pL(Z, 0, g, E )  is non-zero will 
in general be bounded. 

For the left half of the plane y = 0 (x < 0)) p;  is given by the boundary con- 
dition, (2.23). For the right half of the plane y = 0 (2 > 0) pi is undefined. The 
next step is to  find a differential equation for pL(E > 0, O , Z , H )  such that the 
solution given by (3.1) fulfils the condition across the shock (2.24) and possesses 
the proper discontinuity at  Z = 0, i j  = 0 of (2.25)) (2.26). Prior to doing this, the 
inhomogeneous terms in the shock condition (2.24) will be removed by splitting 
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the pressure disturbance p’ into two terms, each of which is a solution of the wave 

(3.2) 
equation (2.20). 

p* is a solution of the type (3.1) yielding the inhomogeneous term in (2.24). 
In  the inhomogeneous term the pressure PA(“,, y, x )  is given by a steady flow 

solution of (2.4) with speed of sound C,. If the co-ordinate xo is related to x and 
then to 5 so that they represent the same point for all x,, the solution ph in the 
new variables will not fulfil the wave equation with the speed of sound C nor the 
equivalent equation (2.20). Since it is necessary only to reproduce the inhomo- 
geneous term at xo = (U, + U,) t or at  5 = 0 with f = Ct( 1 - ill2)&, a linear trans- 
formation xo = Z ( f + X * Z )  can be introduced with X* to be defined and 

pI = p+p*;  

Z = ( g o + g l ) / ( l - M 2 ) $ .  

The pressure p* is then defined by an integral of the type in (3.1), 

The constants A* and A* are defined by the condition, 

Dzrp*(5 = 0, j j , Z , f )  = E p ~ , z o r o ( ~ o  = ‘111, jj, Z). 

In the appendix it is shown that this condition is fulfilled if 

x* = [l- (Mz, - l)/Z”]:, 

A* = - ( M / X o )  Z z , I q [ Z W (  -A*)]. and 

(3.3) 

(3.4) 

(3.5) 

(3.5~) 

(3.5b) 

In the integrand of (3.4), f[?i(A*Z+i), X] represents an equivalent wing moving 
with velocity l /A*.  

Since the wing impinges on the shock at t = 0, the particular solution p* given 
by (3.4) fulfils all the boundary conditions and initial conditions for the region 
behind the shock for t < 0. For a wing moving at  supersonic speed (MI > I ) ,  
p* is identically zero behind the shock for t < 0. At subsonic speed (M, < l), 
p* gives the disturbance pressure behind the shock for t < 0. In either case, it is 
correct to write, 

p ’ = p *  and p = 0, for x < Mt (t  < 0). (3.6) 

After the impingement of the shock by the wing, f > 0, the solution p* alone 
will not fulfil the boundary condition at  ?j = 0, 5 < 0, (2.23). The additional 
contribution p should also fulfil the wave equation, (2.20), the initial condition 
(2.21) and the condition at  infinity (2.22). The remaining boundary conditions 
for p‘, (2.23) to (2.26), become respectively, 

po(Z < O , O , Z , i )  = pC2{Aof,n,o[Z(f+X~~),~]+A,f,n,,[~(t+X5.T;),~], (3.7) 

(3.8) 

(3.9) 

- 
D , i p ( Z  = 0, jj > 0, Z ,  f) = 0, 

- 
and pp(Z = 0-, = 0, X, f) = pC2[Ao + A5]fZoz,,(?if, Z), 

P,(X = 0, jj = 0+, X, f) = pC2[p + AS~f,oro(Uf, Z ) ,  (3.10) 

where A 5 -  - - A *  and X 5 = X * .  
The condition (3.8) across the shock for p is homogeneous and the solution for 

p will be obtained in the same manner as that for a two-dimensional stationary 
- 
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wing (Ting & Ludloff 1952). ji will be expressed in terms of pg  on the plane 
y = 0 by Kirchhoff's formula, 

(3.11) 

where ti = (&t+f-?)ii (i = 1,5), 

The unknown distribution 0, X, i )  ahead of the shock, 3 > 0, will be defined 
by the remaining boundary conditions (3.8) and (3.10). By observing the identity 
[g(<, Q i?- ?)/?Iz = - [g(& 6, i- F)/?I5 + [g&, 6,7)+ the differential operator 
Dz. l ,  is applied to ji, 

(3.12) 

where H ( X )  = l / M ; - z M X + P ,  

A,(L f) = Ilg(O+, 0, 6, i )  - F g W ,  025, q, 
A2(6' t )  = Fgz(O+, 0,6,Q -Pa,&-, 0,5, 

and f(Iv) means the fourth derivative off  with respect to its first argument. 
Boundary condition (3.8) implies that the expression (3.12) vanishes. This will 
be the case if, 

Bz&y3 > O , Z , f )  

= -pC2Z2(AOH( -Ao)  f (IV) [U(f- X o Z ) ,  XI + A6H(  - Xo)$'IV'[O(f- X53), Z]}/Z.n, (3.13) 

and A,(Z, i )  = - ZNA,, t ( 2 ,  t). (3.14) 

For the fulfilment of the boundary condition (3.10), it is necessary to specify 
the appropriate limit p g  as 3-t O+ along the 5-2 plane. The limit is defined by 
applying a kind of 'mean value theorem' for p g ,  namely, 

:~j ig(o+,o)z , i )+~,-(O-,O,z , i?)J  =Fg(O,O+,X,f). (3.15) 

The proof can be carried out in the same manner as that for the two-dimensional 
case (Ting & Ludloff 1952). A simple proof will be given here by splitting the 
solution p ,  and hence Ilg,  into even and odd solutions of 3. For the even solution 
there is no discontinuity in j ie ,g  across the z-axis in the Z-2 plane. The limit of 
F e , s  as 3-+ 0 is unique and is equal to the value on the left side of (3.15). The 
odd solution, FOdd, vanishes on the plane 3 = 0, therefore the derivative of ?jodd 
vanishes on the plane 3 = 0 for y > 0. From the sum of the even and odd solution, 
(3.15) is verified. 

With the aid of (3.15) and (3.9) condition (3.10) is replaced by the following 

(3.16) 
condition, p,(o+,o,z,i) = pC2(2p-Ao+A5)f ,o ,o[a t ;~] ,  

38 F L M  42 



594 

and (3.14) becomes 

L. Timg and M .  Gunzburger 

1JvZ(0+, O , Z , i )  = pC2%[4M(A0-p) +A5x5+A0X0]f,o,,,,[af,Z]. (3.17) 

The differential operator nzT which is the same as that in the two-dimensional 
problem (Ting 8t Ludloff 1956) is hyperbolic and can be written as 

p/az + x;,a/aq (a/az+X,a/aE). 
The unknown pV(2  > 0, 0, i), which satisfies the differential equation (3.13) and the 
boundary conditions (3.16) and (3.17), is obtained in the same manner as the 
two-dimensional problem (Ting & Ludloff 1952). It takes the form, 

&(Z > 0, 0,x, t )  = pc2 c Ajf~ozo[%(f-xjz), 31. (3.18) 
j = l , 2 , 3 , 4  

The constants Aj and Xj  are defined in § 4. 

4. The final solution and definitions of symbols 
The disturbance pressure behind the shock is given by 

where 'i; = [ ( z -&)2+ j j2+(~-c )2 ]~ ,  

& = ? i (&[+f - i ' )  (i = 1or5) ,  

tj = a( -X&+t-- 4 ( j  = 1 , 2 , 3 , 4 ) ,  

(C = (Bl + go)/( 1 - M y $ ,  A, = M + (1  - M 2 ) / ( Z o  + JrJ, 
A ,  = -A,H( -X,)/H(x,), x, = x,. 

H(X)  = x 2 -  2MX + M,2 = 0, M, = u,/c,, 
- A 5  = A* = R(M/Bo)~~(l-M~)/[(B,+Bo)~E(-X5)], 

As = (1 - ( N ;  - 1)  ( 1  -H2)/(Mo + M,)2)6, 

A, = A,, A ,  = - A5H( - X5)/H(X5) ,  
t* = Z(X*t+i-?), M, = u,/co, 

A ,  = - ( B l - B o - M ) 2 ,  M = U/C,  Bo = Uo/C, Bl = UJC, 
- - 

x,, x, are two roots of the quadratic equation, 

and A ,  and A,  are the solution of the two linear simultaneous equations, 

A , + A ,  = 2/L-A0-A,-A,+A,,  

&A, + &A3 = 4 M ( p  - A,) - AoXo - A,Al - A,X, - A 5 x 5 .  

and ,u are defined by the equations following (2.26). 
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In  (4.1), the last integral with coefficient A* is the disturbance pressure p*,  
induced by the equivalent wing to remove the inhomogeneous term in the shock 
equation induced by the disturbances ahead of the shock. The first integral with 
coefficient A ,  represents the disturbance pressure induced by the position of the 
wing behind the shock and the induced inhomogeneous terms on the shock 
condition are removed by its mirror image in the region ahead of the shock, i.e. 
the integral with the coefficient A ,  and x, = X,. The integral with the coefficient 
A ,  ( = - A * )  and X5 = x* cancels the normal velocity on the x-z plane induced 
by the presence of the equivalent wing behind the shock and similarly its induced 
inhomogeneous term is removed by its mirror image, the integral with coefficient 
A ,  and X, = -X5. The remaining two integrals with coefficients A ,  and A ,  are 
induced by the image source distribution ahead of the shock. With X, and X, as the 
two roots of the characteristic equation, the two integrals fulfil the homogeneous 
shock condition and the coefficients A ,  and A,  are chosen so that the final 
solution fulfils the condition of discontinuity at  the intersection of the shock 
with the wing surface. By the inverse Lorentz transformation, the pressure 
distribution in physical variables x, y, z, t is obtained. 

The density variation is obtained from the differential equation (2.5) and the 
boundary condition (2.14a), 

P"", y, 2, t )  = (1/C2) {P'(", y, z ,  t )  + Q,P'(", y,z, t = X / U )  

+ Q,P&J = (U, + U") " / U ,  y, ZI}. 

The shock shape is obtained from ( 2 . 1 4 ~ )  

J O  

where qi is the disturbance velocity potential ahead of the shock with uh = #O,ro .  

5. Reduction to quasi-steady integrals 
In the seven integrals in (4.1) the integration variables c and < are involved 

implicitly in the first argument of the steady source distribution function. In  
order to expedite the integration, the variable 5 will be replaced by the first 
argument of the source distribution function. After this transformation of 
variables, the last integral becomes a steady three-dimensional solution of an 
equivalent wing as shown in the appendix. The other six integrals will be reduced 
to quasi-steady integrals, i.e. the variable t appears explicitly in the limit of 
integration only. From the domains of integration for these new integrals, the 
boundaries of the disturbed regions behind the shock can be defined directly 
from the planform of the wing. The limits of integration for ( for the first two 
integrals in (4.1) are -co and 0 and for the next four integrals are 0 and co. For 
these two groups of integrals the transformation of variables will be discussed 
separately. 

38-2 



596 L. Ting and M .  Gunzburger 

With 5 = 8(&5+ f- F ) ,  i = 0 or 5, the first group of integrals becomes 

(4 (4 (4 
FIGURE 2. Transformation from 6 to [* or &: (a )  l/x < 1, 

( b )  l / X  > 1 ,  Em > 0,  (c) I/X > 1, trn < 0. 

Intermediate steps in the transformation are supplied in the first part of the 
appendix with the aid of figure 2. The second integral appears only when con- 
ditions in ( 5 . 5 ~ )  are fulfilled. The condition a&/afl < 0 a t  ( = 0 implies 

- 
h i + z / [ z 2 + F j 2 + ( 5 - - ) 2 ] 2 L  < 0. (5.8) 

(5.9) 

This is impossible if xi < 1 ,  i.e. iQi > 1 and 

0 < - Xi[p + (2- - 5)”4/( 1 -xi)& < z .  

Condition (5.9) in turn defines the limits Z & ci for 6 in the second integral. 
For the second group of integrals, the variable 6 is replaced by with 

Cj = a[E-r-Xjt] (j = 1 ,2 ,3 ,4 ) ,  

the second group becomes 
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where 

and 
xj = . (LXj.) ,  
= 1 + 3 ( 1  -X!), 

(5.10) 

(5.11) 

P and are defined by (5.3) and (5.4). The integrals are evaluated for 33 < 0; 
it is clear that a&./a$ = U [ ( Z - c ) / F - X J  < 0 for 0 6 6 < co. The negative sign 
assigned to the square root of the integrand is then cancelled by interchanging 
the limits. After the transformation of variables, (4.1) becomes 

Again F is defined by (5 .3) .  The domain of integration for the first group of 
integrals is the domain ? inside the hyperbola (figure 3), 

8 :  = a { ~ - [ Z 2 + ~ 2 + ( Z - - ) 2 ] g ) .  (5.13) 

The domain of integration for the second group, which is real under condition 
(5 .5c ) ,  is the domain ri bounded by the hyperbola B and the hyperbola, 

Hi:[=zi-{(&~-1)[ij2+(X-c)2]}k, for i =  0,5.  (5.14) 

Hi and B are tangential to each other at  ci = Z &. For the last integral, the 
domain of integration, I?*, is the entire c-c plane for N, < 1 and for N, > 1 
is the domain inside the hyperbola, 

H* : ( = z* - ((M2, - 1)  [ i j 2  + (Z - 5)"I)a. (5.15) 

From the definitions of Bj, xi and &, the following relevant results are obtained : 
(i) B0 = B, = (U,+ U,- U) /C  = Mach number of wing relative to the un- 

disturbed stream behind the shock. 
(ii) B2 > 1, g3 > 1, since X 2  < 1, & < 1 and they depend only on the strength 

of the shock, Mo. 
(iii) MI = B4 = B5 = Mach number of the wing relative to the undisturbed 

stream ahead of the shock. 
(iv) xo is a co-ordinate fixed on the wing and x5 and x* are the same co- 

ordinates fixed on the fictitious wing. 
(v) For 31, > 1, the hyperbolas H5 and H* are the same but the domain r5 

is contained inside I?*. 
The domains of integrations in (5.12) and the constant gi and v depend on 

whether the Mach numbers go and H, are greater or less than unity, i.e. they 
depend on the Mach number of the wing relative to the flow behind and to the 
flow ahead of the shock, respectively. The following are the three possible 
combinations for B0 and M,: 

(i) M, < 1, a0 < 1; (ii) M, < 1, a0 > 1 and (iii) M, > 1, go > 1.  
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The fourth combination, MI > 1 and Bo < 1,  as shown by the following in- 
equalities and identities, does not exist: 

[(Co+Uo- U)’-C’]/Cg = 2[(2-7)Mg+2iVO-  l][M$- 1]/[(7+ l ) X ~ ]  > 0,  (5.16) 
Z&,- 1 = (MICo+Uo- U - C ) / C  > (Co+Uo- U - C ) / C  > 0. (5.17) and 

For a given wing, the strength of the source distribution vanishes outside the 
planform S of the wing. The domains of integration for the integrals in (5.12) 
can therefore be reduced from the appropriate I”s to  their intersection with S 
(figure 3). 

Hi 

s 

(4 (b) 
FIGURE 3. Hyperbolas B and Hi (a )  for a point in G,, i.e. outside the domain of influence 

of the shock, ( b )  for a point in GI, i.e. in the domain of influence of the shock. 

Let Gl(t) designate the region in the half space Z 6 0, such that for any point 
5, ij, Z in G1(t) the domain of integration for the first group of integrals a t  the 
instant t i s  not zero, i.e. S n ? $. 0. S n F denotes the intersection of the planform 
S with the domain inside the hyperbola 8. For points in G,(t), the first group 
of integral p> which involves i explicitly will not vanish. Furthermore, the image 
of source distributions due to  the shock condition are contained only in the first 
group of integrals, therefore, domain G1(Q will be called the domain of influence 
of the shock. 

Let G,(t) designate the complement of Gl(Z) in the half space x 6 0, i.e. for 
any point 2, ij, X in G,, S n I’ = 0 and the first group of integrals vanishes, pOJ = 0. 
The remaining integrals depend on the combinations of Ml and B0. 

(i) For go < 1 and I@5 = Ml < 1,  co = c5 = 0, the group of integrals Po and po5 
vanishes. The disturbance pressure p‘ is given by the steady subsonic solution 
p* of the fictitious equivalent wing, i.e. 

p’ ( z ,  i j , Z , t )  = p*(x*, y,x),  for X, i j , Z  in G,(Z). (5.18) 

(ii) For a0 > 1 and I@5 = Ml < 1, co = 2 and r5 = 0, the first integral of the 
second group, Po, does not vanish. Since S n ? = 0, the boundary of the domain 

N 
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of integration I?,, n S will be composed of the boundary of the planform S and 
the hyperbola Ho. Neither of them depends on t explicitly. The integral Po will 
therefore be a steady solution in xo, y, z variables. 

= 2, both integrals Po and p5 in the 
second group do not vanish. The integral Po will have the same properties as that 
in the proceeding case. Similarly, p5 will be a steady solution in x5, y, z variables. 

The domain Gz can be further subdivided with regions where Po vanishes or p5 
cancels p*. The subdivisions for a general planform are presented in Gunzburger 
(1969). The basic principle for the subdivisions is illustrated in 9 6 for a simple 
planform with straight edges. 

(iii) For &f0 > 1 and M, > 1, go = 

6. Examples 
The theoretical results will be applied to a wing with a basic planform and 

thickness distribution as shown in figure 4. The leading edge is xo = kz and the 
two sides are z = 0 and z = B. The inclination of the upper surface is e,  i.e. 

C,,,, 
Mach cone from. 

Sonic sphere / GI, 

/ I  G ic 

Envelope of 
- 
Z disturbances ' 

due to leading 
edge 

FIGURE 4. Illustration of different regions for wing which is subsonic 
ahead of shock and supersonic with supersonic edges behind shock. 

faco(xo,z) = 1. The given planform has two corners, the vertex 0 at the origin 
of xo-z axes and the wing tip, T at (kB, B).  By superposition of the analytical 
solutions for this basic wing, numerical results for the pressure distributions 
and aerodynamic forces for more complicated wings are obtained and presented 
in 9 6 (iii). In  order to simplify the description for the various regions of 8 5 for 
the basic planform, it is assumed that at  the instant under investigation, the 
wing tip is still ahead of the shock, i.e. k B  > (V, + U,) t. The span B will not appear 
in the solution except inp*(x*, y, z )  when MI < 1. With the planform of the wing 
behind the shock having only one corner at  0, the boundaries of various regions 
will depend on the swept back k and the Mach numbers M, and B0. 



600 L. Ting and M .  Gunzburger 

(i) Definition of the regions 
The definition of various regions depend on the combinations of supersonic or 
subsonic Mach numbers Ml and A?, relative to the stream ahead and behind the 
shock and the swept back slope k of the leading edge with respect to the Mach 
cone and the sonic sphere. A special combination is described in detail in this 
section. Descriptions for all the other possible combinations can be found in 
Chow & Gunzburger (1969) and Gunzburger (1969). 

For the wing moving with subsonic speed relative to the stream ahead of and 
supersonic to that behind the shock (M,  < 1, M, > 1) and with a supersonic 
leading edge k < u( 1 -xi)&, the region of influence of the shock GI is composed 
of the hemi-sonic sphere G,, and the half cone, G,, with vertex at  the intersection 
of the leading edge with the shock T' (0 ,  O,Z/k)  and tangential to the sphere. The 
cone is the envelope of the sonic spheres created by the passing of the leading 
edge through the shock. The region G,, which is outside G, and behind the 
shock, can be subdivided to G,, and its complement G,,. In G,, the disturbance 
pressure is p* alone, induced by the subsonic disturbance created ahead of the 
shock. In  G,,, it is the sum of p* and Po, the steady solution for the wing alone. 

The boundary between G,, and G,, is, the Mach cone from the vertex of the 
wing and the Mach plane from the leading edge. The region G,, is composed 
of two subregions G20,3D and G,,,,,. G,,,3D is bounded by the Mach cone from 
the vertex 0, the sonic sphere and the half cone containing G,,. For the wing with 
a constant inclined surface, $5, in G,:,3D is the same as the steady conical solution 
and $5, in G2,, ,D is given by the constant value on a wedge with supersonic swept 
back. 

(ii) Evaluation of integrals and numerical results 
With f , a , o ( ~ O ,  z )  = 0 inside the planform, f,,,, becomes a &function and the 
double integrals in (5.12) can be carried out immediately and the line integrals 
with respect to 5 can be written as 

z -gk  & >  1, E <  0, 
1 

sin-I - - ~- 

( 4 ) i  [ (A@-  1)1]i' 
where 

L = k 2 + 1 - . @ ,  Z = k X + ( 1 + & f 2 ) z  and I =  [ ( X - k ~ ) ~ + k y ~ ] & .  



Diffraction of shock waves by a moving thin wing 601 

For the last integral in (5.10) for p' ,  p*(x*, y, z )  becomes 

p* = - A * [ E ( I L ' * , ~ , z , ~ ~ , ~ ) - E ( I L ' * , ~ , ~ , M ~ , ~ ) ] / ( ~ ~ ) ,  for MI < 1, 

= - A*[E(x*, y, 2,  MI,  <+) - E(x*, y, 2, Ml, <-)]/77, for Nl > I .  

{+ and <- are the two roots of the equation, (x* - k<)2 - ( M ;  - 1)  [y2 + ( x  - <)2]  = 0 
with <+ 2 <. If c- < 0, [- is set equal to zero, and if {+ < O,p* is set equal to zero. 

of shock 
Region of 
3 0  steady 

X= - 1.41 
c -f '\v Leading edge 

FIGURE 5 .  Pressure coefficient for supersonic wing with supersonic edges 
( M  = 0.51, M ,  = 1.5, k = 0.75, ?J = 0, ~t = 1). 

For the first group of integrals, p J  is equal to zero in region G,; inside region G,, 

where [+ and C- with C+ 2 [-- are the < co-ordinates of the points where the leading 
edge = k[ intersect the hyperbola B. If [- < 0, it  is replaced by zero. 

The second group of integrals Po and & are non-zero only when the conditions 
stated in ( 5 . 4 ~ )  are fulfilled and then they are defined as follows: 

pi = - A&@(%%, y, 2,&, C$) - E@i, y, 2 ,  Jq, <m77 in G,, 



602 

and 
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pi = - Ai[E(Xi, y, 2, &, &+) - E(Xi, y, 2, at, [+) 

+ E(x$, y, 2,  q, C-) - E(Zi, y, 2, Bi> m l l n  in Ql, 

where i = 0 or 5 ,  C t ,  c; are the two roots of 

( x t - k g 2 - ( B ; -  l ) - [y2+(2 -~)2 ]  = 0 

with c: > iZ;. If [; < 0, it is replaced by zero. 

Region of 
influence d 
the shock 

0.1 

0.1 I 

I 
1 

FIGURE 6. Pressure coefficient for a subsonic wing 
( M  = 0.8, M I  = 0.25, k = 3, y = 0, ct = 1) .  

A numerical program is written to distinguish various regions and to compute 
from the sum of these explicit expressions for p*,  pJ, jio and ji5, the disturbance 
pressure p’ behind the shock. The program yields result for all t ,  i.e. it works also 
when the wing tip passes behind the shock. The program can also superpose 
several basic planforms. Numerical examples for all possible combinations of 
Mach numbers Ml and B0 and the swept back k and also for several composite 
planforms are given in Chow & Gunzburger (1969). 

Figures 5 and 6 show two of the numerical examples for the wings with a 
straight leading edge. The pressure distribution on the wing at  various stations 
of x are shown together with the various domains in x, y, z space. In  figure 5 
the Mach numbers of the wing with respect to the stream ahead and behind the 
shock are both supersonic (MI > 1, Bo > 1). 

The characteristics of the pressure distribution in various regions are quite 
obvious. The discontinuities in the slope of the pressure curve as it crosses the 
boundaries of various domains, e.g. the sonic sphere, the Mach cone, are quite 
obvious. In  particular, along the intersection of the wing with the shock, x = MCt, 
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the disturbance pressure is constant outside the Mach cone of the equivalent 
wing and is the value along a ray from the vertex T' of the conical solution. At 
T' the pressure is not single valued. It ranges from the two-dimensional value 
behind the oblique shock attached to the leading edge and the conical values 
along the rays from the vertex T' to zero ahead of the leading edge. In figure 6, 
the wing is moving at subsonic speed (M, < 1, Bo < 1) .  Outside the region G, 
the disturbance pressure is the subsonic steady solutionp*(x*, y, z )  corresponding 
to a wing moving at  velocity (1  - x*M)  C/(X* - M )  = U* in x-t variables. The 
pressure distribution behind the shock for t < 0 can be obtained from the present 
result by a translation of x co-ordinate, e.g. the pressure distribution at  the 
instant to > 0 at x = - 2Ct0 is the same as that at  x = - (2C - U*)  to at the instant 
1 = 0. 

(iii) Applications 
For a thin symmetric wing with an arbitrary planform and thickness distribution, 
the pressure disturbance behind the shock wave can be obtained directly from 
(4.1) or (5.12) by numerical evaluation of the double integrals. For wings designed 
for high-speed flight, the planform can be decomposed to several triangles and 
the inclination of the surface in each triangle is a constant. The pressure distribu- 
tion for such wings can be obtained by superposition of the explicit solutions 
given in 3 6 (i) and 3 6 (ii) for wings with the basic planform in the same manner 
as in the steady three-dimensional problems (Donovan & Lawrence 1957). 

For a wing at an angle of attack moving at  supersonic speed and with super- 
sonic edges relative to the stream behind the shock, the flow fields above and 
below the wing are not influenced by each other and by the flow field behind 
the trailing edge. The pressure distribution on the top and the bottom surfaces 
can therefore be computed by the analysis of this paper for wings with equivalent 
symmetric thickness distributions. 

Figure 7 shows the results of the calculations for a triangular plate at  an angle 
of attack and moving at  supersonic speed (M, > 1, Bl+Bo- M > 1 )  and with 
supersonic edges. Before the impinging of the shock by the wing (t < 0), the lift 
and drag on the plate are given by the steady flow solution in the stream behind 
the shock with Mach number M,, i.e. (Liepman & Roshko 1957) 

- 
Lo = D / c ~  = po U: Cp,,(X2/k), GPO = 2 ~ t / ( M :  - 1)4, 

where L and D are the lift and drag, X is the mid-chord length and 2 X / k  is the 
span. GPO is the spanwise mean of pressure coefficient, and is equal to the two- 
dimensional value (Donovan & Lawrence 1957). 

When the shock wave intercepts the wing, X / ( U ,  + Uo) > t > 0, the pressure 
distribution on the wing ahead of shock remains unchanged and that behind 
the shock is conical, i.e. p' is a function of x,/(Ct), y / (Ct )  and z/(Ct). The lift 
variation on the wing is 

L(t) = po U ~ C ~ , , { X ~ -  [(u, + u0) t]2}/k +pC4aJ(B1 + go) t 2 ,  

where 
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and p' is obtained from the explicit solution in $ 6  (ii) with a superposition of the 
latter's mirror image with respect to  the x 3  plane. The lift curve during this 
period is therefore a parabola as shown in figure 7. 

When the trailing edge has passed through the shock and intercepts the sonic 
sphere, X/(Ul  + Uo- U - C) > t > X/(Ul + .Yo), the lift is given by the expression 
L(t) = pC4aJ(X/Ct)  t2. The lift curve in this interval is not a parabola as shown 
in figure 7. 

When the trailing edge passes through the sonic sphere, t > X/ (U,  + Uo - U - G ) ,  
the wing is outside the domain of influence of the shock. The lift on the wing is 

2.5 

2.0 

1 *5 

1 

0.5 

0 
- 0.2 0 0:2 10.4 Ctlx 0.6 1 

Ctlx =0*865 
4 

C t l ~ =  0.365 
ia 

Ctlx= 0 

FIGURE 7. Lift and moment coefficients va. non-dimensionalized time for wing and super- 
sonic leading edges ( M  = 0.51, M I  = 1.5, k = 0.75). Wing Mach number = 1.5. Pressure 
ratio across shock = 7.3. CL = 9 k / i p n : x a ;  GM = d k / ~ p ~ ~ $ ;  a = angle of attack. 

there,fore a constant (figure 7) and is given by the steady supersonic solution 
with respect to the stream behind the shock with Mach number, Bl + Mo - M .  
Also shown is the variation of moment about the leading edge. 

Figure 8 shows the variation of centre of pressure. It moves forward from 
the 213 chord position in steady flow to about 0.46 and then finally returns to 
the 213 chord position after the trailing edge has passed over the sonic sphere. 
Figure 9 shows the pressure variation on a flat terrain in the shape of a pyramid 
when the shock wave has passed over it. The pressure distribution is obtained 
by superposition of the explicit solution in 5 6 (ii) three times corresponding to 
the three swept back edges with Ml = 0 and their images with respect to the 
x-y plane. Due to the symmetry with respect to the X+J plane the pressure 
distribution is shown for half of the pyramid ( z  > 0). The locations of the dis- 
continuities in the slope of the pressure curves which are pre-determined from 
the boundaries for various regions described before, are quite essential in drawing 
the pressure curves for computed data points. 
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I I  
a 

H" 

Q q ctlx 

FIGURE 8. Variation of centre of pressure vs. non-dimensionalized time for wing 
in figure 7. Wing Mach number = 1.5. Pressure ratio across shock = 7.3. 

Z - 
Relative position of shock 

and flat terrain 

FIGURE 9. Pressure coefficient on thin pyramid like obstacle on the ground after the 
shock wave has passed over it. ( M  = 0.51, M ,  = 0, k, = 0.5, k, = 2.5, k, = 0.) 
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Appendix. Reduction of an unsteady solution to a steady solution 
An unsteady solution of the wave equation (2.6) in the physical variables 

x, y, z, t with the speed of sound C is also a solution of the wave equation (2.20) 
in the Lorentz variables 5, Xj, Z, i? with the speed of sound equal to unity. For 
a planar source distribution moving with uniform speed l /X,  the solution of 
(2.20) can be written as 
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h-l is of course also the Mach number of the moving source distribution. In  the 
physical variables, it is moving with Mach number M, = ( 1  - XM)/(X - M )  and 
velocity M, C. Note that M, - 1 and (I/>) - 1 have the same sign. With x* as 
co-ordinate fixed on the source distribution, i.e. x* = x + M, Ct, it is quite obvious 
that the unsteady solution $ with respect to the stream behind the shock should 
be equivalent to a supersonic or subsonic steady solution &x*, y ,  z )  with the 
speed of sound C. A brief derivation of their equivalence will be given in 3 (i) of 
the appendix. In 3 (ii), a steady solution with respect to the stream ahead of the 
shock which cannot be equivalent to an unsteady solution behind the shock in 
the whole space, is made equivalent on a special plane, say the plane of shock. 

- 

(i) Equivalence of an  unsteady solution to a steady solution 

By replacing the variable [ by [* = a(X[+i-F), (A 1 )  becomes 

After expressing F in terms of [*, the denominator in the integrand becomes 

?{ag*/a,') = ?{a[X+ (5- [)/?I) = {(x* - [*)2 - ( M i  - 1) [g2 + (Z - (;)2])g, (A 3) 

with M2,-1 = a2(l-X2) and x* = a(i?+X?). (A 4) 

u = M,/(l-M2)*. (A 5 )  

Both x* and M, will agree with their physical definitions given before when 

The choice of the appropriate sign for the denominator and that of the limits of 
integration in (A 2) should be decided by the sign of a[* /a [ .  aE;*/ac > 0 for all [ 
if l/x < 1,  i.e. the motion of the source distribution is subsonic. c* increases 
monotonically from - 00 to co as [ does and (A 2) becomes 

For X-I  < 1, v = 2 and I'* is the entire [*-6 plane and #(x*, y ,  z )  represents 
a steady subsonic solution (Moo < 1). 

For the supersonic case, l / X  > 1, a[* /a [  has the same sign as ?-[-A?. They 
vanish at = tm and [* = [z ,  with 

.grn = ? - X{ [y2 + (2 - 5)2]/( 1 - XZ)}B, 6; = 2* - {(M: - 1) [g2 + ( 2  - 5)2]1)4. 

As [ increases from - 00 to [-;,,, [* increases from - co to Ez and the positive sign 
in (A 3) should be used. As [ increases from trn to co, E* decreases from [$& to - co 
and the negative sign in (A 3) should be used. For the supersonic case, X < 1 ,  
(A 2) again becomes (A 6) with v = 1 and I?* being thedomaininside the hyperbola 
x* - [* = ( (ML - 1) [y2 + ( z  - 5)2])4 and fi(x*, y, z )  represents a steady supersonic 
solution (M, > 1) .  Thus concludes the proof of the equivalence. 
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(ii) Matching of a steady solution ahead of the shock on the plane 
of the shock with an unsteady solution behind the shock 

The inhomogeneous term KpA,xoxo [x, = ut, ij > 0, Z] in the shock condition (2.24) 
is associated with a steady solution ahead of the shock defined by (2.4) with 
the speed of sound C,. The inhomogeneous term will remain unchanged if the 
variable xo which is fixed on the wing is replaced by a new variable x* which is 
related to 5, f by a linear transformation x* = a ( f + X * Z )  so that x* = x ,  = ?if 
on the plane of the shock 5 = 0. Elsewhere x* and x, are not the same. The 
constant A* is free to be defined. The condition of (3.5) that D8p* at Z = 0 
matches with the inhomogeneous term ~ p ~ , x o , z o ( z o  = ?if, ij, Z )  will be fulfilled if 
D,p*(E, ij, X, f) is identified with Eph,x.x.(x*, ij, Z) ,  i.e. 

where f(IV) means the fourth derivative with respect to the first argument. By 
comparison with (A 1) and (A 6), the constants A* and X* are defined, 

- 
A* = {l-(M~-l)(l-M2)/(Jrl+Jro)2p 

and A* = - (M/Bo)Jr;2E(l -N2)/[(Jr1+iir0)2H(-X*)] .  (A 8) 

When x* is related to 5, f and in turn to the physical variables 2, t ,  A*f(x*, z )  can 
be considered as a fictitious source distribution for an equivalent wing. From 
(A 8), it is clear that the equivalent wing moves with supersonic speed, l /X* > 1 
(or at subsonic speed, l/X* < 1) with respect to the stream behind the shock 
when the original wing is moving with respect to the stream ahead of the shock 
a t  supersonic speed, Ml > 1 (or subsonic speed Ml < 1). 

For the subsonic case A* given by (AS) is always real. For the supersonic 
case, Ml > 1, X* given by (A 8) can be imaginary or zero for certain combinations 
of Ml and M,. This possibility will be investigated. 

For a supersonic flow ahead of the shock, the radius of intersection of the 
shock and the Mach cone is R, = (Bl + @,) f/[(M2, - 1) (1 - M2)]*. The radius of 
the intersection of the shock and the Mach cone of the equivalent wing moving 
with Mach number l/x* in 5, tvariables is R* = f/( 1 - x*2).  A necessary condition 
for the equivalence of those two solutions in the plane of the shock is that 
R, = R*. R* has a lower bound f which is the radius of the sonic circle. When the 
radius R, is less than f, x* is imaginary. This means only that the solution cannot 
be represented by the type of (3.1). It does not mean that the mathematical 
problem stated at  the end of 9 2 has no solution. 

The condition for x* real is R, > f which is equivalent to the condition, 

[ ( Y - ~ ) ( M ~ - ~ ) ~ - ( ( ~ - Y ) I M ~  < ( ~ + 1 ) %  

+ {[2(7- 1) M i +  41 (xi - 1) [Mt+ (7- 1) Mi + I]}&. (A 9) 

The inequality holds for all values of Hl if M i  < 1 + [(3 - ~ ) / ( y  - l)]4, i.e. No < 3 
for y = 1.4 or the shock strength pip,  < 3.7. For stronger shock the inequality 
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defines an upper bound for MI, e.g. with pipo = 20, Mo = 4.16, MI < 4.50. It is 
clear that so long as the shock strength is less than 20, the proposed procedure 
for the removal of the inhomogeneous term works for wings moving at  super- or 
subsonic speeds. Indeed, in the soIution by transform method of the problem 
for a supersonic moving wing the same restriction was imposed by a statement 
in Arora (1968) which amounts to assuming (A*)2 > 0. 
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The flow of a tubular film 
Part 2. Interpretation of the model 

and discussion of solutions 
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The equations governing the free-surface flow of a tubular film of liquid are 
derived from physical arguments, which throw some light on the formal process 
described in part 1. The solutions of the equations are discussed, in particular 
with reference to the film-blowing process for the manufacture of thin sheets of 
thermoplastic material. The qualitative adequacy of a model based on the 
dominance of viscous forces is demonstrated, and the effect of surface tension, 
air drag and non-isothermal flow is discussed briefly. 

1. Introduction 
The work described below can be thought of either as an application of the 

formal results of part 1 (Pearson & Petrie 1970a), providing in addition a physical 
description of the approximations made there, or as a physically based approxi- 
mate solution of a practical problem, whose formal justification can be found in 
part 1. The authors hope that they have succeeded in separating the two parts of 
the work sufficiently for either to be intelligible on its own. 

The process studied here is one for the manufacture of a thin sheet or film of 
a thermoplastic, such as polyethylene, from molten material supplied under 
pressure by a screw extruder. Figure 1 illustrates the process schematically. 
The liquid is forced through an annular die and the tubular film produced is 
thinned by both an internal pressure and an axial tension. Thus, any element of 
the film is being drawn down in two directions as it flows from the die to the take- 
up rolls (which are usually vertically above the die). These are arranged to guide 
the film once it has solidified (and cooled sufficiently to prevent the film sticking 
to itself) from its cylindrical shape to a plane (‘layflat ’) form as it passes through 
the nip rolls. The nip rolls form an airtight seal, so that between them and the 
die the film forms a tubular bubble containg air at a pressure slightly above 
atmospheric. The air supply led in through the centre of the die is used only to  
adjust this pressure. 

The rate of cooling, and thus the distance to the freeze-line (the region where the 
molten polymer solidifies) is controlled by jets of cooling air from a ring sur- 

t Present address : Department of Engineering Mathematics, University of Newcastle 
upon Tyne. 
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rounding the bubble. The nip rolls are driven to provide the axial tension needed 
to take up the film, and might be driven at either constant speed or constant 
torque, usually the former. (The implications of this choice for the problem of the 
control of product dimensions are discussed elsewhere-Pearson & Petrie 1970 b. )  

cooling ‘air 

FIGURE 1. Diagram of the am-blowing process; section in a vertical plane. 

As far as the steady-state problem is concerned we can take either the speed or 
the torque as prescribed, and the choice which is most convenient for our analysis 
of the flow of the liquid polymer is of a given axial tension applied to the film at  
the freeze-line. 

What we seek to do here is to set up and use a mathematical model of the %ow 
in the region between the die and the freeze-line, where we have the free-surface 
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flow of a highly viscous liquid. We need to prescribe at least seven parameters in 
order to get a determinate problem, and these are taken to be the bubble radius 
and the film thickness at  the die, the freeze-line distance, the pressure difference 
across the bubble, the axial tension at the freeze-line, the volumetric flow rate, 
and the viscosity of the liquid. If we wish to take account of any but the essential 
factors controlling the flow, more parameters will be required. We can then 
predict the bubble shape, its thickness and velocity, and the forces acting in it. 
In particular, the dimensionless ratios of bubble radius, film thickness and 
velocity a t  the freeze-line to the corresponding quantities at the die can be 
predicted in terms of three numbers, which are essentially dimensionless values 
of the freeze-line distance, the excess pressure inside the bubble, and the axial 
tension at  the freeze-line. (The velocity ratio and the axial tension can be trans- 
posed between the lists of dependent and independent quantities, if the velocity, 
rather than the tension, is prescribed at  the freeze-line.) 

2. The mathematical model 
The basic assumptions made are that the forces controlling the flow are the 

viscous forces arising in the steady axisymmetric isothermal flow of a homo- 
geneous Newtonian liquid, and that the film is thin enough for variations in the 
flow field across it to be ignored, and for the velocity gradients to be approximated 
locally by those of a plane film being extended bi-axially. These assumptions, 
and the neglect of the effects of gravity, surface tension, air drag and the inertia 
of the liquid, are justified formally to some extent in part 1. They are justified 
practically, in part at  least, by the fact that reasonable predictions are obtained. 

Further experimental verification is required before the range of applicability 
of the simple viscous model can be inferred. Certainly cases are known where other 
factors cannot be neglected, in particular gravity. The present model can be ex- 
tended to cover most of these cases. 

Equations governing the flow have already been derived in part 1 (equations 
(16) and (1 7) )  by means of a formal perturbation expansion. Here an alternative, 
less formal, approach is shown to lead to the same results, and a t  the same time 
to help in the understanding of the essential physics of the situation. The two 
relevant equations are based on a simple balance of forces, one in the axial direc- 
tion and the other in the direction normal to the film surface. 

We take cylindrical polar co-ordinates (p,  q5, z )  as shown in figures 1 and 2, 
and define the following symbols: 

a is the bubble radius (measured normal to the z-axis) which takes values a,, 
at z = 0 (at the die) and A a t  z = 2 (at the freeze-line); corresponding dimension- 
less quantities are r = a/ao and R = A/a,. (T corresponds to h,, in part 1.) 

his the film thickness (measured normal to the film surface), which takes the 
values h, at z = 0 and H at z = 2; since h only appears as aratio, it is not necessary 
to define a dimensionless thickness. @/a, corresponds to eh,, in part 1.) 
x = z/ao and X = Z/ao are dimensionless values of the axial co-ordinate and of 

the freeze-line distance respectively. 
0 is the angle between the bubble profile and the z-axis, so that tan 0 = da/dz. 

39-2 
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p is the liquid viscosity and Q the total volumetric flow rate. 
A is the pressure difference across the bubble, p (inside) - p  (outside), and F, is 

the axial force applied at  the freeze-line. 
In order to obtain the velocity gradients, we define local Cartesian co-ordinates 

(tl, t2, t3) at a point P in the film, with & in the direction of flow, t2 normal to 
the film and t3 in the transverse (circumferential) direction (see figure 2). For 
definiteness we take the origin P to be on the inner surface; then the &-axis 

FIGURE 2 .  Co-ordinate systems; sectioned plan and elevation of a portion of the film. 

meets the outer surface at  t2 = h. (At P, the ,& directions coincide with the xi 
directions of the ‘intrinsic’ co-ordinates used in part 1.) In this co-ordinate 
system, we take velocity components (vl, v2, v3),  and proceed to obtain approxima- 
tions to the velocity gradients av,/a&. 

On the inner surface g2 = 0, v2 is zero, and on the outer surface v2 = Dh/Dt, 
so that, neglecting the variation of av2/at2 with t2, we obtain 

av2/at2 = h-lDh/Dt. 

Similarly, using the axisymmetry condition and the relation t3 = atan(6, we 
obtain 

av3/ag3 = a-IDa/Dt; 
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&l/a& = - (h-lDh/Dt + a-lDalDt). 
and continuity gives 

613 

These quantities are all O(1); the other velocity gradients are O(h/a); they are 
ignored in this analysis. Treating a and has functions of z ,  and using dzld[ ,  = cos 6' 
and D[,/Dt = vl, we obtain 

avl/a& = - V ~ C O S  B(a-lda/dz+ h-ldhldz). 

8v2/at2 = v1 cos B h-l dhldx, 

8v3/at3 = v1 cos 0 a-1 daldz. and 

(It may readily be shown that these correspond to the first-order terms obtainable 
from equation (3)) part 1.) 

The principal stresses are given by 

pii = - p  + 2p.a~,/a[~, for i = 1,2,  and 3, 

and the condition that p,, is zero (relative to atmospheric pressure) at  the free 
surfaces gives, for the hydrostatic pressure p, 

p = 2pvl cos 8 h-l dhldz (1)  

(cf. equation (15), part 1). This imposes the condition that A < p ;  i.e. A is 
O(h/a) multiplied by a typical viscous stress. (There is no inconsistency in 
ignoring A here while using it below, since in the equations below it balances 
terms of order h multiplied by a typical viscous stress.) The stresses are functions 
of t1 only; and they can be integrated across the film to give the longitudinal and 
transverse (hoop) forces per unit length, PL ( = hpll) andP, ( = hp,,),respectively. 
Using the overall equation of continuity, Q = 27rahv1, to eliminate v1 gives finally 

and 

pQcos8 1 da 2 dh p - _ _ _ _  --+--  
L -  7ra (adz hdz]' 

P -  (3) 

The balance of the total axial force between cross-sections at z and at  2 (the 
freeze-line) gives, neglecting inertial forces, 

SnapL cos I3 - na2A = F, - nAzA; (4) 

that of the normal forces on the film gives 

A = pL/RL -k pH/RH, ( 5 )  

where R, and RH are the principal radii of curvature, 

R, = a sec 0 and RL = - sec3 B/(d2a/dz2). 

(See e.g. Novozhilov 1959, p. 96.) 
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Introducing the dimensionless variables defined above and the dimensionless 
parameters, 

B = na$A/pQ (a dimensionless pressure difference), 

T, = aoFZ/pQ (a dimensionless axial force), 

and 

and writing ’ for dldx give, after some rearrangement, 

T = T,- R2B (the total dimensionless axial force a t  any cross-section), 

h’/h = - &r’/r - $sec2B(T +r2B) = - &r’/r - $(l +r ’2 )  (T +r2B) ,  (6) 

and (7) 

(In order to show the equivalence of these equations to  (16) and (17), part I ,  
set B = P1/2$,, dx/dxl = cosd, and eliminate T by differentiation.) Thus, we 
have found one integral of the equations derived in part 1, and have separated 
the problem of finding the shape of the bubble from that of finding the film 
thickness, ( 7 )  being an equation in r alone. 

Two boundary conditions for (6) and (7) can be stated immediately. They are 

2r2(T + r2B) r“ = 6r’ + r sec28(T - 3r2B) = 6r’ + r( 1 + T I 2 )  (T - 3r2B). 

h=h,, r = l  a t  x = O .  (8) 

A second boundary condition for (7)  could be prescribed arbitrarily as 

r’ = b a t  x = 0, 

but physical considerations suggest that it is conditions a t  the freeze-line end of 
the bubble that will control the process. If the material freezes (i.e. p -+ co), 
then r’ must become zero beyond that line, no further deformation being possible. 
It is intuitively obvious that the relation, 

r ’ =  0, x = X ,  (9) 

can be applied to the molten region also, provided PL and PH remain bounded. 
To show this in the case of rapid freezing, we suppose that the viscosity changes 
from its constant finite value yo to an infinite value within a region of length e 
(measured in the x-direction) where E can later + 0. If this is the case, then r can 
be taken as constant in (7) and we get a relation of the form, 

r’’ = A p ’  + B( 1 + r’2).  

Here A and B are constants, fixed by the parameters defining the problem, 
r’ = 0 at x = X and p varies from ,ao to infinity in the range [ X  - E ,  X I .  Ele- 
mentary argument shows that for suitable p, say 

P = P0(4(X - x))4 

the term r“ is always O(1) and so r‘ is always O ( E ) .  Hence, by letting e +  0, we 
recover (9) as the suitable boundary condition we sought. It is worth noting 
that the same argument does not imply h’ = 0 a t  x = X ,  which would otherwise 
overdetermine the problem. 

The consequence of these boundary conditions is that the solution of (6),  ( 7 )  
will not in general yield r‘ = 0 a t  x = 0, although for large enough X this is very 
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nearly true. This is not incompatible with the equations governing flow at a 
die exit; though at  the level of approximation we are concerned with, we cannot 
investigate this matter further. 

3. Discussion 3.1. The phase-plane 

We now have a non-linear two-point boundary-value problem; both for the 
qualitative discussion, and for the numerical solution of (7), it is convenient to 
take initial conditions T = R, r' = 0 at x = X, then modify the choice of R until 
we get r = 1 at x = 0. From this point of view, the parameters B (pressure), 
Tz (axial tension), X (freeze-line distance) and the initial value R completely 
specify the bubble shape (T = Tz - R2B), and we avoid the problem that, if we 
start from x = 0, R and hence the parameter T ,  which appears in the equation, 
are not known in advance. (It would be necessary t o  guess values for r' at x = 0 
and for T ,  two guesses instead of one.) 

We rewrite (7)  as 

1 (10) 
dr /dx  = s, 

ds/dx = (6s + r( 1 + s2) (T - 3r2B)}/{2r2(T + PB)}, 

and study the trajectories (solution curves) of system (10) in the phase plane 
with co-ordinates ( r ,  s). The system 

(11) I dr ld t  = - 2r2s(T + r2B), 

dsldt = - 6s - r( 1 + s2) ( T -  3r2B), 

where dx ld t  = - 2r2(T +r2B), has the same trajectories as system (lo), with x 
decreasing in the direction of 6 increasing for r2(T + r2B) > 0. Problems of in- 
terpretation on r = 0 and on T + r2B = 0 will be postponed. 

Since the equations are unaltered if the signs of r and s are both changed, 
and since the half-lines r = 0, s > 0 and r = 0, s < 0 are solutions of system (1 l), 
and so may not be crossed by any other trajectories, we confine our attention to 
the half-plane r 2 0. In  order to keep the discussion manageable, we restrict 
attention to B > 0 and Tz > 0, the ranges relevant to the problem which 
motivates this study, and consider the three cases T > 0, T = 0 and T < 0. 
These are further subdivided, according to the number and type of the singular 
points, into: 

l(a), 

1(c), 

3(a ) ,  

T3 > 81B/16 > 0, 

81BI16 > T3 > 0, 

0 > T3 > -9B/16, 

l ( b ) ,  T3 = 81B/16 > 0, 

2, T = 0,  

3 ( b ) ,  

3 ( ~ ) ,  

0 > T3 = - 9B/l6,  

0 > -9B/16 > T3. 

The results are summarized here and illustrated in figures 3-5. The appendix 
gives more details and outlines proofs of some of the statements made here. 

Case 1. There are two singular points in r 2 0, namely (0, 0), which is a saddle- 
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1 

0.5 

0 

-0.5 

(a)  (b)  

direction of z decreasing: ( a )  case l(a), (B/T3)& = +; ( b )  case l ( c ) ,  (B/T3)* = Q. v = 8, 
FIGURE 3. Phase plane for case 1, T > 0. Sketches of typical trajectories, arrows in the 

u = r(B/T)i. 

1 

0 

- 0.5 

FIGURE 4. Phase plane for case 2, T = 0. Sketches of typical trajectories, arrows in the 
direction of x decreasing. v = s, u = rB$. 

9 
L 

1 

- I  

(a)  ( b )  
FIGURE 5. Phase plane for case 3, T < 0. Sketches of typical trajectories, arrows in the 
direction of x decreasing. (a)  Case 3 (a) ,  ( -  B/T3)* = 8; ( 6 )  case 3 (c), ( -  B/T3)4 = +. 2) = S, 

u = r( - B/T)*. 
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point, and ((T/3B)t, 0)) which is a focus in case 1 (a)  and a node in cases 1 (b)  
and 1 ( c ) .  This latter singular point is stable as 6 increases (x decreases, from the 
freeze-line towards the die). It can further be shown that there are no closed 
trajectories; hence, that every trajectory starting in r > 0 tends to ((T/3B)4, 0 )  
a s x +  -CQ. 

Case 2. The only singular point is the origin, which is a node, stable as 5 in- 
creases. 

Case 3. The origin is a saddle-point; in case 3 (c), this is the only singular point. 
In case 3(b ) ,  there is a saddle-node at  (( - T/B)3,1). In  case 3(a) ,  the point 
(( - T/B)t ,  q )  is a node (stable as 5 increases) ; the point (( - T/B)t,  l / q )  is a saddle- 
point, where q is the smaller root of 4q2 - 6( - BIT74 q + 4 = 0. 

In case 3, r < (-  T/B)a corresponds to T + r2B < 0;  so in figure 5 the arrows 
on the trajectories (in the direction of x decreasing) show 6 decreasing for 
r < (- T/B)t  and increasing for r > ( - T/B)*. For system (lo), moreover, the 
points (( - T/B)t,  q)  and (( - T/B)t,  l / q )  are not strictly speaking singular points, 
since they are not themselves solutions of the equations, and solutions tending 
to these points do in fact reach them in a finite distance (x). They are rather 
points of bifurcation of these solutions, where dsldx ( = d2r/dx2) is indeterminate. 
The physical interpretation of this non-uniqueness is discussed below. (See also 
appendix.) 

3.2. Results of the qualitative analysis 

First we discuss case 3,  where T, is so small that there is a real, positive value of r ,  
r = (R2- T,/B)t, for which T +r2B vanishes, and ( 7 )  becomes singular. From (6) 
(which is (4) in dimensionless form), we see that this means that the longitudinal 
tension in the bubble PL vanishes at  this value ofr, so that the radius of curvature 
RL in ( 5 )  is indeterminate. With this interpretation (that the film becomes slack), 
it is not surprising that our model fails to predict a unique shape for the bubble; 
to keep in touch with the practical process, we insist that the axial tension applied 
is sufficient to keep the film taut between the die and the freeze-line. It is sufficient 
for this to require that T, > B(R2- 1) .  

Numerical solution of the equations (see below) shows that cases 2 and 3 give 
rise to large blow ratios R and very small freeze-line distances X and thickness 
reductions h,/H compared with the values observed in practice, so subsequent 
discussion is based on case 1. As was mentioned above the qualitative analysis 
provides additional reasons for the choice of boundary condition that was made 
(r‘ = 0 at x = X). As x decreases (proceeding towards the die), the trajectories 
approach the singular point and, for large enough freeze-line heights, r’ must be 
small at the die. (Computation suggests that r’ will fall below 0-1, in a distance of 
about 3 die diameters, measured from the freeze-line.) Thus, the observed be- 
haviour of the solutions is predicted without the necessity of imposing any 
condition at  x = 0. A similar argument does not apply for x increasing, as we 
approach the freeze-line; moreover, d2r/dx2 is large far from the singular point, 
so that a small change in X would cause a large change in drlda: at  x = X (i.e. the 
bubble shape would be critically dependent on X ,  and similarly on the other 
parameters, unless the condition on drldx is imposed at  the freeze-line). 
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We can also make some numerical predictions for long bubbles, since all 
trajectories tend to the singular point r = (T/3B)t,  r' = 0, as x + - 00. Hence, as 
X - + O ~ ,  the die radius tends to (T/3B)*; since r (0)  = 1, we have in the limit 
T = 3B, so that the blow ratio R tends to the value (T,/B- 3) t .  In  case 1 (c), 
provided R is not too large, r decreases monotonically from R to (TI3B)B; so 
the die radius 1 must be greater than the latter value. Hence, 

R2 > Tz/B - 3, 

and we have a minimum blow ratio attained for large freeze-line distances. The 
numerical work confirms that this behaviour is relevant for values of the para- 
meters in the practical range of interest; it also shows that the limiting value is 
nearly attained in many cases for freeze-line distances of about 10 times the die 
radius (X M 10). 

Again, this limiting value is independent of liquid flow rate and viscosity, 
since T,/B = FZ/raiA; it depends only on the applied forces and the die radius. 
For a long bubble, the blow ratio increases with increased axial tension, and 
with decreased die radius and internal pressure. This last result is less surprising 
when one recalls the behaviour of a spherical bubble acted on by an internal 
pressure and surface tension forces. (The excess pressure required to sustain the 
bubble is inversely proportional to its radius.) 

We can use the foregoing to estimate the effect of increasing the freeze-line 
distance on the thickness reduction h,/H. Once the bubble is long enough for the 
limiting value of R to be substantially attained, any increase in X corresponds 
to a lengthening of the neck of the bubble, where r is close to 1, and r' is close to 0. 
We consider freeze-line distances X ,  and X,, with corresponding film thicknesses 
HI and H,; if R is the same in both cases, we have 

(ho/Hl)/(h,o/Hz) = expIx'  a( 1 + rI2) (T + r2B) dz. 

Between X ,  and X, (measuring from the freeze-line), r w 1 and T I  M 0, so that 
X, 

( h O / ~ l ) l ( ~ O / H A  %5 exp P ( X ,  - X,t> 
(using T/3B w 1). Estimates obtained in this way are compared with computed 
values of the ratio H,/H, in table 1. 

Pressure difference (B)  0.1 0.1 0.1 0.2 0.2 0.3 
Axial tension ( T z )  0.5 0.5 2.0 1.0 2.5 2.0 
Limiting blow ratio 1.41 1.41 4.12 1.41 3.08 1.91 

( R  = (Tz/B- 3)t) 

Lower freeze-line distance (X,)  20 15 10 10 4 6 
Upper freeze-line distance (XI) 30 20 15 15 10 10 

Estimate of H,/H,, 2.72 1.65 1.65 2.72 3.32 3.32 

Computed valuo of H , / H ,  2.84 1.74 1.86 2.89 3.61 3.46 
exp (BW, - X , ) )  

TABLE 1. Comparison of estimated and computed values of the change in thickness 
reduction due to a change in freeze-line distance 
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3.3. Numerical results 
Numerical estimates of the bubble shape and thickness were obtained by a 
Runge-Kutta integration procedure, no special precautions being necessary. 
Values of B, T,, and X were fixed, R was guessed, and (7) was integrated from 
x = X (with r = R and &/ax = 0 )  to x = 0. This process was repeated with 
improved guesses for R, until the condition r = 1 at x = 0 was satisfied.i Then (6) 
was integrated to give h,/H (and h,/h(x) if desired). Some typical bubble shapes 
are shown in figure 6 for values of the parameters corresponding to cases 1 (a) ,  
1 (c), 2 and 3 (a). The shape for case 1 (c) is similar to those observed in practice. 

I R  

X X 
-+ 

FIGURE 6. Sketches of typical bubble shapes: (a)  case 1 (a), 
(6) case 1(c), (c) case 2, (d) case 3(a).  

For the film-blowing process two of the important parameters are the product 
dimensions, which are determined by A and H ,  so the dimensionless ratios 
R (=  Afa,) and h,/H are the quantities we wish to predict as functions of the 
dimensionless parameters B, T, and X (i.e. of the physical variables A, F,, 8, a,, 
p and Q ) .  For results of practical interest, we may restrict attention to the ranges 

t If no other information was available (e.g. from calculations with similar values of 
the parameters), R was chosen by linear interpolation. The f i s t  two values used in that case 
were ((Tz/B) - 3$, the limiting value of R as X + CO, and (Tz/B)*, the limiting value of R 
as the film tension was allowed to fall to zero at some point in a long film. In  practice, 
the final value was often quite near the f is t  of these values, as can be seen in figure 7.  
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1.5 < R < 3, 10 < h,/H < 30 and 8 < X < 20; hence, we have the restrictions 
0.075 < B 6 0.4 and 0.5 d T, d 2.5.  It is not easy to estimate p (since in practice 
it could vary from 104 to  lo6 poise along the film, on account of the variations 
of temperature, and, to  a lesser extent, of shear rate); there are no data from which 
Fz can be obtained (so far as we know). Thus, the above is probably the most 
reliable way of estimating the relevant values of the parameters. If we take the 
values (appropriate to  a small-scale experimental arrangement) a, = 3.75 cm, 
Q = 4cm3/sec, A = 70 N/m2 ( z 7 x lo-* atmospheres), p = 3 x lo5 poise, and 
F, = 5N (z 1 lb. wt.), we obtain B = 0.097 and T, = 1.56. 

4 

3 
R1. 

2 

I I ! I I 

10 20 30 40 50 

JLOlH 
--3 

FIGURE 7.  Typical results: Blow ratio R against thickness reduction ho/H. Curves of 
constant B and Tz, B and X, and T z  and X. (a) B = 0.1, T z  = 2 ;  (b) B = 0.2, T z  = 2; 
(c) B = 0.1, Tz = 1 ;  (d )  B = 0.2, T z  = 1;  ( e )  B = 0.1, T z  = 0.5; (f) B = 0.1, ,Y = 10; 
(9)  B = 0.2, X = 5; (h) B zz 0.1, X = 20; (i) B ~ 0 . 2 ,  X = 10; ( j )  Tz = 2, X = 10; 
(k) T z  = 1, X = 20; ( I )  T z  = 1, X = 10. 

Pressure difference (B)  0.2 0.175 0.165 0.1 0.09 
Axial tension (Tz) 2.3 2.0 1.85 1.15 1.0 
Freeze-line distance (X) 8 9 10 20 23 

TABLE 2. Typical values of the dimensionless parameters for blow ratio (R)  = 3 and 
thickness reduction (ho/H) = 20 

The effect of the parameters B, Tz and X on the product dimensions is shown in 
figure 7, where R is plotted against h,/H for fixed values of pairs of these para- 
meters. Table 2 shows how these parameters are interrelated by giving typical 
values of the three of them for R = 3 and h,/H = 20. (One of B, T, and X can 
be chosen arbitrarily.) 

As mentioned in $1,  the take-up of the film, which has here been assumed to 
imply a prescribed axial tension T, a t  the freeze-line, could be at  constant velocity, 
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equivalent to fixing the axial velocity a t  the freeze-line. From continuity 
(Q = 27rahv,), we deduce that R = v,(O) h,/v,(X) H, giving a straight line of slope 
v,(O)/v,(X) on figure 7. Thus, fixing values of B and X (giving another line on 
figure 7), as well as this ratio, suffices to determine the solution of the problem. 
To compute a solution from these conditions, a value of T, would be guessed, 
and the value of T, needed to give the prescribed value of the ratio v,(O)/v,(X) 
would be found by iteration. 

3.4. Neglected factors 
The effect on the feasibility of this approach to the analysis of the film-blowing 
process of some of the many neglected factors has been discussed from the point 
of view of the asymptotic analysis in part 1 (Pearson & Petrie 1 9 7 0 ~ ) .  Here 
remarks will be confined to four topics where the less formal approach can be 
expected to be helpful. In  particular, no mention is made here of gravity, inertia 
or effects due to a thick film. (In practice the ratio of film thickness to bubble 
radius will lie between 0.05 and 0.005 at the die, and will be smaller downstream.) 

The details of the flow at the die exit, where the flow changes from a constrained 
to a free-surface flow, have been ignored, despite the quite large 'die-swell' 
effects observed in the flow of molten polymers. (See e.g. Pearson 1966, p. 48.) The 
assumption, that the effects of this transition are confined to a region near the 
die exit, allows the crude approach of 'correcting' the initial values a, and h, 
from the die dimensions to the values the die dimensions would have to take in 
the absence of any such effects, so as to give the same downstream flow. With 
the present state of knowledge of the transition flow, this is an empirical correction. 

Air drag can perhaps be dealt with (iteratively if necessary), by taking the 
results of the above analysis in its absence, and calculating the air drag on a 
bubble of that fixed shape and velocity. Taylor (1959) leads one to hope that the 
effect will be small. (Taylor estimates a 7 yo velocity reduction due to air drag 
on a water bell.) 

The effect of surface tension can easily be allowed for in this approach, with the 
proviso that, if the surface tension forces are very much greater than the viscous 
forces, the film thickness is not found in the first approximation, since the equa- 
tions replacing (6) and (7 )  become equivalent. We write PL+ 2r and PH + 2I' for 
PLand P' in (4) and (5)' where I? is the surface tension a t  the liquid-air interface, 
and then terms 4Grsece and 2Gr2sece are added to the right-hand sides of (6) 
and (7), respectively, where G = 271.4 I'/,uQ, the ratio of surface tension to viscous 
forces. The modified equations have not been studied in detail, but the limiting 
value of R as X + co is readily obtained from 

1 = (&)"([l+&]'+[m] G2 4 ), where R 2 =  (T,-T)/B, 

and the phase plane is not altered in any major way for T > 0 and G not too 
large. The non-uniqueness in case 3 is not avoided by taking surface tension into 
consideration. 

Temperature affects the mechanics of the flow through the dependence of 
viscosity on temperature; an attempt was made to estimate this effect by allowing 
/I to vary with position along the film. The viscosity was taken to be ,uo at the 
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freeze-line, where it changes discontinuously as in all the models considered, 
and to decrease towards the die (withincreasing temperature) in a predetermined 
way. Functions,u/,u, = 1 - O.O5(X - x), exp { - O.O5(X - x)> and exp { - 0.5(X - x)} 
were used for X up to 8, 8 and 10 respectively, giving viscosity reductions of 
40 %, 33 yo and 99 % over the length of the bubble. The bubble shape was not 
significantly altered in any of these cases, the major effect being a considerable 
increase in the thickness reduction h,/H over the value it took in the constant 
viscosity case. This is in the main due to more rapid thinning of the film in the 
long neck of the bubble, where the liquid is hottest and least viscous. Obviously, 
this will have an important effect on the quantitative predictions, but it leaves 
the qualitative results substantially unaffected. A similar conclusion probably 
holds for the effect of the variation of viscosity with rate of shear. 

4. Conclusions 
We can, with reasonable confidence, deduce from the results of this work that 

the dominant factor controlling the flow is the balance between the viscous 
forces and the externally applied forces. The major shortcoming of the quan- 
titative predictions (for the practical process of making thermoplastic film) is 
likely to arise from the neglect of the temperature variation and its effect on the 
liquid viscosity. The effects of surface tension and air drag are certainly worth 
investigating, but seem unlikely to affect the main features of the flow. In large 
bubbles of thick film being slowly drawn, gravity becomes a limiting factor. 

Part of the work reported here was carried out while one of us (C. J. S. P.) held a 
Science Research Council Fellowship in the Department of Chemical Engineering 
a t  Cambridge. We are grateful to the Science Research Council, and to the Head 
of the Department, for enabling us to carry out this work. Some of the computa- 
tional work was done in the computing laboratories of Cambridge and of New- 
castle upon Tyne Universities; we are also grateful to the directors of these 
laboratories for the use of their facilities. 

Appendix. The phase plane for system (11) 
dr/d[ = - 2r2s(T+r2B), 

ds/d[ = - 6s - r( 1 + s2) (T - 3r2B). 

(i) The origin is a non-elementary singular point to which the theorems of 
Keil (Sansone & Conti 1964, pp. 256-267) may be applied. For T $. 0 (cases 1 and 
3), we write u = Tr, v = 6s + Tr, t = 66, and A = BIT3, to obtain 

where 

du/dt = g(u, v), 
dv/dt = w +f(u, v) ,  

and g(u, v) = +&(V - u) (1 + A d ) .  
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We identify (v, a)  with (x, y) of Keil’s theorems, and see that system (A 1) satisfies 
the hypotheses of the theorems; namely, that f and g are dominated by linear 
terms near (0, O ) ,  and that in a neighbourhood of (0, 0), excluding (0,O) itself, 
duldt and dvldt do not both vanish. 

From the first theorem, there are two and only two trajectories tangent to the 
v-axis at the origin, and for system (Al)  these are clearly the half-lines u = 0, 
v > 0 and u = 0, v < 0. The two regions, into which this pair of trajectories 
divides the plane, are considered separately; from the second theorem, the 
trajectories in each region fall into one of two classes: either (1) all trajectories 
are parabolic (i.e. they tend to the origin) and tangent to the u-axis a t  the origin, 
or (2) one trajectory is parabolic and tangent to the u-axis at  the origin, while 
all the other trajectories are hyperbolic (as are the trajectories near a saddle- 
point). Thus, the origin is either a node ((1) in both regions), a saddle-point 
((2) in both regions), or a saddle-node (( 1) in one region and (2) in the other region). 

We distinguish between these alternatives by means of the third theorem, 
by studying the slope dvldu of trajectories on either side of the isocline Jo (where 
dvldu = 0). We consider first the half-plane u > 0, where, if dvldu increases with v 
increasing across J,, we have (l), and, if dv/du decreases, we have (2). The converse 
is true in the half-plane u < 0. 

Here we approximate Jo near the origin by 

v = &( 1 + 108A) u3 + &AU5, 

so that for A > - 1/108 J, lies in the first and third quadrants (uv > 0). On v = 0, 
dv/du is given by 

av/au = (-u3(1+ i o s ~ ) - 5 ~ u 5 ) / { - 2 ~ 3 ( 1 + ~ U 2 ) } ,  

which is positive near the origin for A > -IjlOS, so that, from continuity 
arguments, dvldu in this case decreases as J, is crossed in the direction of v 
increasing. (And, in u < 0, it increases.) For A < - l/lOS, J, lies in the second 
and fourth quadrants, and dvldu is negative near the origin, leading to the same 
conclusion. Thus, for all values of A ,  the origin is a saddle-point with separatrices 
tangent to the u- and v-axes (i.e. the separatrices are the lines r = 0 and 
6s + Tr = 0 in the (r,  s)-plane). (See figures 3 and 5.) 

For T = 0, we set u = rB), v = s and t = - 6g to obtain 

du/dt = QUCV, 

dvldt = v - 4 ~ 3 (  1 + $), 

and apply the same methods. (See figure 4.) 
(ii) At the singular point ((T/3B)i,  0) of case 1 the equations are, writing 

W = r -  (T/3B)t,  dw/d< = ( 8T2/9B) s + 0(w2 + s2), 

ds/d< = - ~ T w  + 6s + 0(w2  + s2). 

The standard methods (see e.g. Sansone & Conti 1964, pp. 44-47) lead to the 
results that the point ((T/SB)#, 0) is a stable focus for 16T3/9B > 9, and a stable 
node for 16T3/9B < 9. In  the latter case, the critical directions are given by 
S/W = Y(B/T3)4 [l f (1 - 16T3/81B)$]. 
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(iii) Similarly, the results stated in the main text for the singular points of case 
3 (a)  can be obtained from 

d(r  - ( - T/B)*)/d( = - 4q( - T3/B)4 ( r  - ( - T/B)*) + O((r  - ( - T/B)4)2+ (s - q ) 2 ) ,  

d(s  - q)/df; = - 10(q2 + 1) T(r  - ( - T/B)B) + (8q( - T3/B)4 - 6 )  ( s  - q)  

+ O( ( r  - ( - + ( s  - q ) 2 ) ,  
for the point (1, q) ,  and 

d(r  - ( - T/B)i)/df;  = - ( 4 / q )  ( - T3/B)* (r - ( - T/B)&) 

+ O ( ( r - (  -T/B)i)2+(s- ~ / q ) ~ ) ,  

d(s-  I /q ) /d f ;  = -(10T(q2+ l ) /q2)  ( r - ( -T /B)~)+(8( -T3 /B)h /q -6 ) ( s -  l/q) 

+ O((r  - ( - T/B) i )2  + ( s  - l / q ) 2 )  

where q = $( -B/T3) t -  (( - 9B/16T3)  - 1);) and 0 > T3 > - 9B/16 .  
(iv) In case 3 ( b ) ,  we write u = r - ( - T/B)4, v = s - 1 to obtain 

du/df; = - 3~ + O(u2 + v2), 
dv/dc  = ~ ~ ( - B / T ) ~ u + O ( U ~ + V ~ ) ,  

so that u = v = 0 is a non-elementary singular point, which may be shown to be 
a saddle-node. (Sansone I% Conti 1964, pp. 256-267.) 

(v) In  case 3, solutions with dr1d.z: tending to co are possible and we can get 
more information by considering the ( r ,  @-plane, where tan8 = dr /dx ;  i.e. we 
have as phase space the surface of a cylinder rather than ‘a plane. System (1 1)  
becomes I (A 3) 

du/dt = - 2u2(u2 - 1 )  sin 8, 
d0/dt = cos 8(u( 1 + 3u2) - m sin 28) ,  

where u = r( -BIT);, m = 6(  -BIT3): 

and d t /dx  = 2 ( - T 3 / B ) i / 2 r 2 ( T  t r2B) cos 0 .  

In case 3 (a ) ,  system (A 3) has six singularities on u = 1 and a further four on u = 0 
in -n < 8 d n. Writing a for the smallest positive root of 

sin28 = 4/m (0 < a < an), 
theseare ( l , a ) ,  (l,fin-a), (l,Qn), (1, -n+ct), (1, -&--a), (1,  -in-) and ( O , O ) ,  
(0, in), (0, T), (0, -in). Solutions relevant to the physical problem start on 
8 = 0 with u > 1 (at the freeze-line) and such solutions, and in fact any solutions 
starting in u > 1, reach either the singularity (1 ,  a )  or (1, in), apart from the 
separatrices approaching (1, QT - a)  and Ieaving (1, - in). At these singularities, 
the solution of system (10) is indeterminate, but there are only certain possibilities 
open to it. For example, solutions leaving (1, a), apart from the ingoing separatrix 
to the origin, must approach either (1 ,  - in) or (0, in), and, by such arguments, 
certain types of solution can be predicted. The investigation of the solutions of 
the equations in this case are not discussed in more detail here, because they 
are not relevant to the particular physical problem motivating the analysis. 

(vi) The proof that in case 1 all trajectories in r > 0 tend to the singular point 
(( T/3B)B, 0 )  depends on showing that there is a family of closed curves in this half- 
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plane, which are always crossed from their exterior to their interior by trajectories 
as x decreases. System (1 1)  may be written 

dv - - m v  +u( l  - 3u2) (1  +v2) 
au 

- 
2u2( 1 + u2) v 

(where u = r(T/B)3, t = [(T3/B)4, m = 6(B/T3)9 and v = s), which can be in- 
tegrated to give v2 = Azc/(l + u 2 ) 2 -  1 +E(u),  

where A = (1 + U ) 2  (1 + V2)/Ufor the trajectory passing through the point ( U ,  V ) ,  
and 

Writing v; = Au/( l  + u ~ ) ~ -  1, we see that the curves v2 = v: are closed, sym- 
metrical about v = 0, and cut v = 0 once between u = 0 and u = 1/43, and once 
for u > 1/43. ( A  as defined above is never less than 56 J3, that minimum value 
giving a real value (0 )  for v only at  u = 1/43.) 

We treat vl as an approximation to v with error E ,  and show that E is always 
such that 1v1 < lull as we proceed in the direction of x decreasing. Now m > 0, 
u > 0, and for v > 0 u decreases with x decreasing along a trajectory, so we 
take u < U ,  and see immediately that E < 0. Similarly, for v < 0, we take u > U ,  
and again E < 0, so that v2 < v:, which is the desired result. Since the family of 
curves v2 = v: fills the half-plane u > 0, this completes the proof. 
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A stream with constant velocity U is impulsively started at  time t = 0 past the 
trailing edge of a semi-infinite flat plate. According to boundary-layer theory, it 
is found that the flow at a distance x downstream from the trailing edge is 
unaware of the presence of the plate when x > Ut;  at time t = x/U there is then a 
discontinuity in the velocity normal to the plate. It is the neglect of diffusion 
parallel to the axis of the plate that introduces the discontinuity, and when the 
complete Navier-Stokes equations are considered for t N x / U ,  a solution is 
found that can be matched with that gained from boundary-layer arguments. 

1. Introduction 
Some time ago Stewartson (1951) considered the following problem: a semi- 

infinite flat plate is at  rest in a slightly viscous liquid when, at time t = 0, a 
uniform stream of constant velocity U is impulsively set up past the leading 
edge of the plate. This was tackled as a boundary-layer problem, so that for 
times t less than x lU,  at points a distance x downstream from the leading edge, 
the Rayleigh solution for the flow past an infinite plate represents the motion. 
At later times, however, the steady Blasius solution for the semi-infinite plate 
eventually dominates. The manner in which the motion passes from one limiting 
case to the other has been the cause of certain controversy recently. Stewartson 
himself indicated that the effect of the leading edge is passed by convection with 
velocity U along the edge of the boundary layer, arriving a distance x downstream 
when T = Utlx = 1; diffusion then transmits this effect through the boundary 
layer to the plate. Mathematically, an essential singularity is expected at  T = 1. 
No formal proof could be given, but a solution of the equations was found that did 
possess such a singularity. The analysis in this paper was generalized by Smith 
(1967) for the equivalent flow past a wedge, and a similar, tentative conclusion 
followed. 

In  a recent paper by Tokuda (1968), the results of Stewartson were disputed, 
though Stewartson & Brown (see corrigendum to Tokuda 1968) rightly observe 
that his conclusions were based on inaccurate numerical data, and that his proof 
of the existence of a series solution for the velocity is false. 

To the present author at least, the search for a solution with an essential 
singularity a t  T = 1 seems the only one likely to succeed when the equations con- 
sidered are the boundary-layer equations. The boundary-layer equations for 

40-2 
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unsteady flows neglect the diffusion of vorticity parallel to the stream; they 
include only diffusion perpendicular, and convection parallel to the mainstream 
flow. Convection is governed by hyperbolic partial differential equations which 
preserve discontinuities, and diffusion by parabolic partial differential equations 
which ' smooth out ' discontinuities immediately-mathematically by the 
presence of essential singularities. The author is aware of the numerical solution 
by Hall (1968) of the boundary-layer equations for the Stewartson problem; 
a smooth joining of the two limiting cases is exhibited. Mathematically, the 
discontinuity is a consequence of solving the linearized boundary-layer equations; 
it is then found that the introduction of the non-linear terms ensures the existence 
of a smooth solution with the essential singularity. 

A factor neglected by Stewartson is the influence of diffusion acting parallel to 
the stream. The full Navier-Stokes equations would have to be considered if this 
effect were included, but the mathematics involved is very difficult and has not 
been attempted here. However, any solution would show that the knowledge of 
the leading edge is transmitted immediately throughout the flow field; here the 
only discontinuity would be at  the initial moment of time. 

In  the present work, therefore, we consider the same physical situation except 
that the uniform stream flows in the opposite direction; that is, we take the edge 
of the semi-infinite plate to be a trailing edge. With this change the mathematics 
becomes more amenable to solution and the main features of the flow are dis- 
played. After stating the problem in $2, we first consider the solution of the 
boundary-layer equations when the variation from a uniform stream is small; 
this enables us to linearize the equations. For points in the wake region, when 
0 < T = Utlx  < 1, the flow has a constant velocity U parallel to the plate. When 
r = 1, the influence of the trailing edge is first noticed with a discontinuity in the 
velocity normal to the axis of the plate. 

A discussion follows of the nature of the flow as T --f 00. and it is found that the 
approach to the limiting solution is by means of an exponential decay. When a 
precise asymptotic analysis is carried through, it is interesting to observe that it 
is the process of convection acting within the boundary layer that transmits the 
effect of the trailing edge through the wake. 

In an attempt to eliminate the singulariky at T = 1, the Navier-Stokes equa- 
tions, linearized in the same manner as the boundary-layer equations, are 
investigated in the region T E 1 as a singular perturbation problem. A solution is 
found which matches with the behaviour in the boundary-layer solution for both 
0 < 1 - 7 < 1 and 0 < T - 1 < 1. The smooth joining that was anticipated on 
physical grounds is therefore proved. When the complete (non-linear) Navier- 
Stokes equations are investigated, it is found that the linearization procedure is 
certainly valid for regions at  the edge of the boundary layer. As points closer to 
the axis within the boundary layer are considered, the non-linear terms become 
more important. However, it is unusual to note that when linear and non-linear 
terms are of equal importance, the leading term in the solution of the differential 
equation is just that found from the linear Navier-Stokes equations; the higher 
terms do differ though. This fact considerably extends the validity of the linear 
solution. 
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It is of some interest to consider the effect of the non-linear terms in the 
boundary-layer equations. In  the work of Stewartson (1951) it was the influence 
of these terms that allowed the discontinuity from the linearized equations to be 
smoothed out by the essential singularity. In $6, a summary is given of argu- 
ments which indicate that in the trailing edge situation the discontinuity is not 
removed by the non-linear terms. There is no essential singularity at  7 = 1; in 
fact the dominant term of the solution of the linear boundary-layer equations 
near T = 1 is also the dominant term from the non-linear equations. The physical 
explanation offered is as follows: in the flow past the leading edge the effect of the 
edge is convected downstream at a velocity less than that of the uniform stream. 
A t  the edge of the boundary layer this difference is certainly very small, but it is 
non-zero. The presence of the plate instantaneously retards the flow at all points 
downstream of the leading edge at the initial time. In  contrast, the vorticity 
downstream from the trailing edge is zero a t  the initial time, and the effect of the 
edge is convected at  exactly the free-stream velocity. Initially the vorticity is 
discontinuous along the line x = 0, and so this line of discontinuity moves down- 
stream with the constant velocity U when the effect of diffusion parallel to the 
plate is neglected. That is, the discontinuity is preserved at  the value 7 = 1, and 
it can only be removed through considering the Navier -Stokes equations. 

Finally, we consider the limitations of the model of a semi-idmite flat plate to 
describe realistic flows. 

2. Statement of the problem 
We consider the problem as one with a constant velocity U impulsively set up 

in the main stream at time t = 0,  while the plate remains at rest. The motion is 
two dimensional, so we take the origin of the co-ordinate system as the trailing 
edge of the flat plate which otherwise occupies the negative part of the x axis. 
If u and v are the components of velocity parallel to the x and y axes respectively, 
then the Navier-Stokes equations are 

UxfVy = 0, (2.1) 

(2.2) 

(2.3) 

Ut + uu, + 27UY = - p-ipz + VV%, 

vt + uv, + vvy = - p-lpy + vv2v ; 

p(x ,  y, t )  is the pressure and p, Y are the constants representing the density and 
kinematic viscosity of the fluid. 

When a stream function @(x, y, t )  is defined by u = $y, v = - II., the equation of 
continuity (2.1) is immediately satisfied. The pressure p can then be eliminated 
from the momentum equations (2.2), (2.3) for 

when w = V2$; this is the Helmholtz equation for the vorticity w(x ,  y, t ) .  Because 
of a symmetry about the x axis, the solution of these equations is considered for 
y > 0 only. 
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The boundary and initial conditions can be stated as follows: 

u = v = 0 when y = 0, x < 0,  t 3 0 ;  ( 2 . 5 ~ )  

uy = v = 0 when y = 0, x > 0, t 3 0 ;  ( 2 . 5 b )  

u =  U ,  v =  0 when y > 0, x > 0, t = 0 ;  ( 2 . 5 ~ )  

u z U ,  v 2: 0 when y-tm, t 3 0; ( 2 . 5 d )  

uz U ,  V E  0 when x++co, t 3 0. ( 2 . 5 e )  

The final condition to be stated is that for x -+ - 00. Here there is no knowledge of 
the trailing edge so that the velocities are those for the flow past an infinite plate. 
That is, 

v - 0  as X - f - - 0 0 ,  t > 0 ,  (2 .5f )  

where 

this was given by Rayleigh (1911). The only other point noted here is that, 
eventually, the velocities tend to zero throughout the  flow field. However, the 
manner of this decay does not interest us; it is the somewhat artificial result of 
taking a semi-infinite plate rather than one of finite length. 

The conditions to be satisfied have been stated for the set of equations (2.1)- 
(2.3); it is a straightforward matter to adjust these for the equation (2.4). 

3. A boundary-layer solution 
It is the assumption of the Prandtl boundary-layer theory for the unsteady 

flow past a flat plate that the motion is represented by a balance between con- 
vection parallel to, and diffusion normal to, the axis of the plate; the pressure 
gradient is zero, This leads to the equations (cf. Rosenhead 1963), 

U , f V y  = 0, (3.1) 
Ut+UU,+vU?, = vuyy, (3.2) 

from ( 2 .  l), (2.2). In this approximation we neglect the action of diffusion parallel 
to the plate; convection alone acts in the positive II: direction, so that ( 2 . 5 f )  must 
represent the velocities for all x < 0. In  the remainder of this section we consider 
x 3 0 alone, and set the condition 

v = O  when .% = 0. y > 0  (3.3) 

to replace ( 2 . 5 a , f ) ;  (2.5b-e) remain. These non-linear boundary-layer equations 
cannot, of course, be solved completely; further assumptions need now be made to 
gain the information required. 

Here our interest centres on the development of the wake downstream from the 
trailing edge. To begin, therefore, we consider the situation when the motion 
differs only slightly from the basic flow of a uniform stream; that is, we neglect 
the products of v and u-U in the boundary-layer equation (3.2) to give the linear 

~~ 

differential equation 
,u,+ uuz = vuyv (x,y,t 2 0) .  (3.4) 
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The solution of this equation, together with the conditions (2.5b-e), (3.3), is 
considered in an attempt to describe the flow at a time soon after the disturbance 
due to the plate reaches the point P(x, y) in the wake region, particularly for P at 
the edge of the boundary layer. The neglect of the non-linear terms certainly does 
raise important points; however, we delay a full discussion until a later section. 
The equation (3.4) is equivalent to that derived by Stewartson (1951); a similar 
method of solution to the one he used is adopted here. 

We define 
(3.5) 

and from dimensional arguments it is clear that u is a function of < and 7 only. 
Consequently, u(<, 7 )  satisfies 

ucc+g&+7(r- l)u,  = 0 (3.6) 

subject to the conditions uc = 0 on [ = 0; u --f U as both ~ + 0 0  and 7 -+ 0 ;  
u N U erf &’ as r -+ 00, $; 0. A solution is sought in the form of a Fourier cosine 
transform, defining 

U(a, 7 )  = u(<, 7 )  cos a<dC. 
/om 

With (uJS=,, = 0, the transform of (3.6) becomes the first-order partial dif- 
ferential equation 

which has the solution 
4aua - r(7 - 1 )U, + (a2 + &)?I = 0, 

where G is an arbitrary function. That is, 

when the constant for the inverse transform is absorbed into G. From the con- 
dition 7 + co we find 

IOm a-1 e-a2 ~ ( a 2 )  cos [a da = u erf+C. 

Taking the inverse transform (Erdelyi et aZ. 1954, p. 73), 

a-l e-a2 G (+a2) = U6(a)  - 47r-t Ue-a’ @(&; 3; a2), 

where @(a; c ;  z )  is the Humbert notation for the confluent hypergeometric 
function (Erdelyi et al. 1953, p. 248) and &(a) is the Dirac delta function. The 
other conditions are already satisfied unless r --f 0 and < + 00 simultaneously 
such that rC2 is constant. In this case we require 

a-lG( -a2) = U6(a). 

Therefore, if r < 1, the solution is u = U ,  though for 7 2 1 we have, after some 
simplification, 
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more generally, we can expand the integral of (3.7) into the infinite series 

when the (2n) superscript represents the 2nth derivative. 
These results can be interpreted immediately: the velocity u(x,  y, t )  is constant 

at the point P(x,  y)  until a time t = x /U  has elapsed. Accordingly, there is a 
finite time within which the flow in the wake is unaware of the presence of the 
plate because the disturbance due to the trailing edge is transmitted through the 
liquid by convection at  the mainstream velocity. At 7 = 1 , the velocity u, and all 
its derivatives with respect to y are continuous. However, uz is discontinuous 
and so, from the equation of continuity, v is also discontinuous. This conclusion 
is physically unrealistic, and can be taken to be anatural consequence of neglecting 
the derivatives with respect to x in the boundary-layer approximation. Alterna- 
tively, it can be argued that the discontinuity present in the solution of the linear 
equation is removed when the non-linear terms are included, and that the real 
flow is more accurately described in this way. Stewartson (1951) followed the 
second line of reasoning when he considered the flow past the leading edge. These 
two possibilities are closely investigated in the following sections. 

According to the linear boundary-layer approximation, the vorticity w is 
given by ul/. From (3.9) this then indicates w = 0 for 7 < 1, and 

for7 2 1. 
After the work described in this paper had been completed, it was found 

possible to sum this series. The terms in (3.11) can be rearranged to give an 
infinite series with terms in (7 - 1) rather than (7 - 1 ) / ~ .  The resulting expression 

which is the series expansion for the function 

(3.12) 

This rearrangement is a purely formal procedure; however, it  is now easily seen 
that (3.12) does in fact satisfy both the differential equation and boundary con- 
ditions required, and so represents the solution for the problem. Corresponding to 
(3.12) we can gain 

u = ~ - ~ / ~ e - t ~ ~ e r f ~ ~ ) c i p  nt  (7 2 11, 

When the asymptotic expansion is taken for (3.12), we have 
from (3.10). 

w E U(nr~t)-t{e-~%2- 2 ( 7 r & - + e - ~ ~ 2 r }  for 7 -too, 6 = O(1). 

The second term is essentially the correction due to the disturbance of the 
trailing edge at  the edge of the boundary layer for large times t ;  the variable 
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C2r = Uy2/vz is time independent. It is seen, therefore, that the disturbance is 
carried away by convection, and particularly that it is concentrated near t: small, 
i.e. closer to the axis. It is indeed interesting to observe the role of convection 
here in transmitting the effect of the trailing edge within the boundary layer 
itself, and the author is grateful to a referee for bringing this point to his attention. 

4. A solution in the neighbourhood of r = 1 
It is convenient to consider the Navier-Stokes equations in the form (2.4). 

Again we begin by considering the flow when it differs slightly from that of a 
uniform stream, so that it is possible to write @ = Uy in the Jacobian of (2.4) to 

(4.1) 
give 

These circumstances are the same as those under which (3.4) was considered in 
the previous section; now, however, the wzz term is included to represent dif- 
fusion parallel to the z axis. 

Together with the non-dimensional variables 5 and T (given in (3.5)), we 
further define 

Wt + u w ,  = vv2w. 

2 q = -  

When the function H ( C , q , r )  is introduced by w = U(vt)-$H, it is seen that H 
satisfies the linear partial differential equation 

(vt)4 

H,,++CH,++H+r(r-  1)H, = T ~ H , - ~ ~ H , - H , , - ~ T ~ - ~ H , - T ~ ~ - ~ H , ,  (4.2) 

from (4.1). When 7 +co, and a/aq = 0, the right-hand side of (4.2) is zero, so that 
the resultant equation for the vorticity in terms of H as a function of C and T is 
equivalent to the boundary-layer equation (3.6) for the velocity w([, 7). After 
setting appropriate conditions the solution would then be given by (3.11). 

Generally, it is known that the singular points of a differential equation occur 
where the coefficient of a highest order derivative is equal to zero. Now when q is 
infinite and T = 1, the coefficients of both the H,, and H, terms in (4.2) are zero. 
In  the region under consideration it is necessary that the coefficients of these 
terms are of finite order, together with the coefficients of the other highest 
derivatives. Physically, this ensures that the processes of diffusion (in both 
directions) and convection are in balance. 

We therefore introduce the transformation 

(T = (7-1)q  
to replace r ;  (4.2) then becomes 

(4.3) 

H g  + + &H - (r + r ) H ,  + QgH, + 2 7 - ' ( ~  + q)H, 

+&qH,+ 2(~q-~H, ,+H, ,+q-~(( (~+l j )~+~~~)H, ,  = 0. (4.4) 

When q $ 1 and 17- 11 < 1 such that (T = O(l ) ,  the coefficients of H,, and H, 
are both O(1). The transformation (4.3) is a stretching transformation in the 
terminology of singular perturbation problems. 
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The boundary conditions are now set in terms of 5 and 0. because a solution is 
sought for (4.4) for large 7. At < = 0 we require H = 0, since the vorticity is zero 
ony = 0, x > 0, cf. ( 2 . 5 b ) .  Further, H --f 0 as <+a and also as 0 . 3  -a. Finally 
we match H onto the dominant term 

of (3.10) as 0. -+ +a. 
i .r-1(~ - 1 )3ge-tC2 (4.5) 

For the first step in the solution it is possible for us to write 

H = Se-icz M ( u ,  7) (4.6) 

for some function M ;  in this way the conditions for 5 can be satisfied as well as 
(4.5). The corresponding differential equation for M becomes 

(1 + 2 a p +  20.27-2) Mu, + M,, 3- 2u7-1Mu, 

+ (ku + 27-1 + 20-7-2) M u  - (0- + $7) lM, + $M = 0, 

the solution of which must match with 7r-l a4 7-4 from (4.5). Therefore we write 
M = r]drn(a), and then note, on retaining only the dominant terms for large 7, 

(4.7) 
that 

where dashes denote differentiation with respect to a. The general solution of this 
ordinary differential equation is 

(4.8) 

where A and B are constants (possibly complex). As a function of the complex 
variable z, @ ( a ; c ; z )  is defined in the z plane cut along the negative real axis; 
hence m(u)  has different representations for u > 0 and CT < 0 while still retaining 
continuous derivatives of all orders at g = 0. We require m to have an exponential 
decay as u + - co, and m N r1u4  as u -+ + co; the asymptotic expansions for 
@ (Erdelyi et al. 1953, p. 278) show 

m‘’ + -1gm‘ - l m  = 0 
2 4 

m(u) = A@( - $; +; - i@) +B( - &T”kD($; 8; - p), 

A = 2-hn-3 r(2) a,nd B = - i(27r-8 r(g). (4.91 

We note, in particular, that the values (4.9) imply 

m N 2-kn-1( - g)4 e - P  as (r‘ --f -a. (4.10) 

Collecting these results together, we can finally write 

for u 5 0 as the vorticity when 7 > 1, 17- 11 
The result (4.11) clearly indicates a process whereby the effect of the plate is 

initially, though only slightly noticed at  a point in the wake through the process 
of diffusion; its effect is then rapidly increased when T N 1 as convection comes 
to dominate the motion. As T increases in value, the boundary-layer solution 
(3.11) will give an accurate representation for the velocity with an error of the 
order of e--f’12 as long as the assumptions u-U, v < U are valid. This will certainly 
be true at  the edge of the boundary layer, though at points well within this layer 
the full non-linearity of the differential equations will have to be faced. 

1.  
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We just note here that the matching can be continued for higher terms. When 
we write H = (5e-*52)(2n) 7-(n+4)m,(a), and substitute into (4.4), the dominant 
terms for 7 9 1 lead to an ordinary differential equation for m,(a) with solution 

m n = A n @( - $ - 4n; Q; - i c 2 )  + B,( - &a2)& @($-in; 8; - &a2) 

for constants A ,  and B,; this generalizes (4.8). The constants are calculated on 
satisfying the conditions m, + 0 when a 3 - 00; m, is proportional to en+) 
when c 3 + 00. The details are not completed here. 

The main question to consider at  this juncture in the work is the validity of the 
linearization procedure that resulted in (4.1). With this end in view, the complete 
Navier-Stokes equations are considered in terms of the independent variables [, 
7, a. The function F(c ,q ,  c) is defined from the stream function + by 

this isolates the part due to the uniform stream. The vorticity equation (2.4) is 
then 

HCg + aCHC + 4H + H,,, - &7H, - aH, + 207-lH,, + (1 + 20-7-l+ 2 ~ ~ 7 - ~ ) H , ,  

+ $TH, + 2(7-l+ ~ V - ~ ) H ,  = (0. + 7){(FuHg - FgH,) + (FCH. - F7HS)}, (4.12) 

where 

H = 3'55 + F,, + 2a7-'FU,, + 2(7-l+ aq-') Fv + (1  + 2 ~ 7 - l +  2 ~ ~ 7 - ~ )  F,,. (4.13) 

From the linear analysis we have found that 

H - q-4(e-"2m(c) for [ $  1,  7 9 1,  u = O(1); (4.14) 

consequently, 

j?' - 47-45-1e-t5'm(a) for 6 9 1, 7 1 ,  u = O(1). (4.15) 

When these asymptotic representations are substituted into (4.12), it is observed 
that the linear terms are of the order 7-*53e-4527 whereas the non-linear terms are 
of the order ge-aC'. Therefore the neglect of the non-linear terms on the right-hand 

[ Z e P  9 $. (4.16) 
side is justified when 

Thevariableu = (7- l)qisfinite,sothatq - + m a s r - + l ;  (4.16)showsthatcneed 
tend to infinity no quicker than (2 log ,)a as r -+ 1. This indicates that there does 
exist a region downstream from the origin at  the edge of the boundary layer 
where the linearized Navier-Stokes equations are sufficient to describe the real 
flow as r + 1. At points further into the boundary layer the non-linear terms 
must be taken into account. 

We now introduce new independent variables 

4 = 7-154et5z and x = 7-15 

to replace 5 and q.  The variable + is taken to be O( l), which requires x < 1 when 
5 is large; we maintain a = 0 ( 1 )  as before. The asymptotic condition (4.15) 
becomes F 

F = xf(97 4, (4.17) 

4x+-*rn(u) as I$  + co; this enables us to write 
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which is substituted into the equations (4.12), (4.13). It is expected that (4.17) 
represents the leading term for x small in the expression for the stream function 
within the required region. When the dominant terms only are retained, the 
resultant partial differential equation for f is 

W$$$ + S4f$$ + Z.f$ + q5f$f$u - q5fJ$$ -fJ$ = 0; (4.18) 

the ratio of terms neglected to those retained is O(c-2). The boundary conditions 
to be posed are f 44-1. m(u) as q5 -+ 03, f 47r-14-9 at as u + m and 

f N 2b7-14-q - u ) - % e - & U . "  as u-+ -03. 

A solution that satisfies (4.18) and all these conditions is in fact 

f = 44-&m(u). (4.19) 

That is, the solution of the linear part of the differential equation also satisfies the 
non-linear part when equated to zero. This could, of course, have been noted 
immediately from observing that the dominant terms gained from substituting 
(4.15) into (4.12) do cancel. Nevertheless, the formal analysis pursued above is 
necessary for later observations. 

The function (4.19) is a solution of (4,18), but because insufficient boundary 
conditions have been imposed we cannot be certain yet that it is the unique 
solution. No condition has been stated at q5 = 0 on the boundary of the domain 
- 03 < CT < 03, cr 2 0. Uniqueness can be investigated by taking (4.19) to be the 
first term in an asymptotic series for q5 large of the exact solution of (4.18). We 
write f = 44-*m(u) + fl(q5, u), where fll  < 9-4 for q5 9 1, and fl does not upset 
the conditions as u + & co. When the quadratic terms in fl are rejected, the 
resultant linear differential equation is seen to be 

(4%$$$ + fq5fl$$ + #fl$) 
- (4$Qmy1$4+ 2q5-imf1++ 64-h'f1++$-3mflU) = 0. (4.20) 

The terms in the first bracket dominate for q5 9 1, and when the other terms are 
neglected the differential equation can be formally integrated for 

f1= A(c)q5-4 + B(u) log q5 + C(U),  

where A ,  B, G are arbitrary functions. To satisfy the condition I f l l  < $-$for q5 $- 1 
it is clear that the functions A ,  B and C are all identically zero. 

The only other way in which a solution with continuous derivatives of all 
orders can arise from a linear equation such a5 (4.20) is through the presence of an 
essential singularity at  some value q5 = q50 > 0. Now essential singularities are 
only anticipated for values q50 which give a zero coefficient for the highest order 
derivative with respect to q5; it is immediately observed that there are no positive 
values q5,, with this property in the present case. These arguments show that 
(4.19) is, in fact, the unique solution for all q5, u in the given domain. The range of 
validity of the solutions (4.14), (4.15) is thereby increased; nevertheless the 
formulation of (4.18) involved neglecting terms that were O(c-2), so it is still not 
possible to take g = O( 1). 
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We now consider the higher order terms. The approximation (4.17) is known to 
incur an error that is O(c-2). Now c3efCa = $x-l and so for small x we can write 
[-2 = - (2  log x)-l; the first two terms in the expansion for F are then given by 

F = 4 ~ $ - 4 m ( ~ )  +x(logX)-lf*($, (T) 

for some functionf". The dominant terms gained when this is substituted into 
(4.12), (4.13) provide the linear differential equation 

$ ~ ~ $ C ~ + ~ ~ $ ~ ~ , * , ~ + ~ ~ $ ~ ~ $ +  Wf$ - $ - w 4 $ Y & $ +  12Qf&+ 3 f 3  

- $4-8 m(4#y&,,+ 4Qf&-f,*) = 4#-'(m'm''- mm"'). (4.21) 

No general solution of (4.21) seems to be possible, though we can note that there 
exists the solutionf* = A (a)$-&, for all functions A ,  of the homogeneous differen- 
tial equation. Particular solutions of the inhomogeneous equation for $ large and 
$ small are respectively 

f* = 8$"(m'm'' - mm'") and f* = 244log $m-l(mm" - W L ' ~ ) ;  

both are small in comparison with $4 in their separate domains. Consequently, 
the corrective effects for the dominant term (4.19) from the non-linear part of the 
differential equation do not enter the resultant expression for F until higher 
orders than the second. The details are not considered any further here. 

5. Discussion 
In  $ 3 the boundary-layer equations are linearized to give an understanding of 

the flow at the edge of the boundary layer; we now briefly consider the role of the 
non-linear terms in these equations in the neighbourhood of r = 1. Because the 
analysis is very long, in some places following closely that already given in $4, 
the conclusions are just summarized here. 

When the stream function $(s,y,t) is written as 4 = U(vt)4{c+F(f;,7)},  F 
satisfies the differential equation 

FCCC+ $[FCC+7(7- 1)FC,+72(F5FC,-F,F~C) = 0. (5.1) 

F N 4n-l(7- 1)4c-;-le-tC* for 0 < 7- 1 < 1, c - t o ~ .  (5.2) 

It is already known that P = 0 for 0 < 7 < 1, while linear theory states that 

Now the linearization of (5.1) is invalid when 5 = (7- l)I;"eP is positive and 
O( l), which gives a non-uniform region as 7 -f 1 + when 5 % 1 ; however, when 
(5.2) is substituted into (5. l ) ,  it  is seen that the dominant terms cancel. This leads 
us to conjecture that (5.2) represents the leading term in the solution to the non- 
linear boundary-layer equations as 6 -+ 0 + . The conjecture is justified when it is 
proved (i) that (5.2) is the unique solution to (5.1) for 5 = O(1) with the correct 
behaviour as 5 -+a, and (ii) that there is no further region of non-uniformity 
within which 5 = O( 1). (An infinite number of solutions to (5.1) with an essential 
singularity at  r = 1 do exist, but all have a rapidly oscillating part that is 
physically unrealistic and must be rejected.) These conclusions imply that the 



638 S. H .  Smith 

discontinuity in the velocity perpendicular to the axis of the plate is a natural 
consequence of the boundary-layer assumption. 

To conclude, we can state the error involved in the calculations of the pre- 
ceeding sections when the plate is real with a finite length 1. 

The point P(x, y) is taken to be in the wake with x > 0; the origin represents the 
trailing edge and the point ( - I, 0) the leading edge. Any influence of the leading 
edge will be transported by convection to the point P after the time (1 +x)/U; at 
this time the solution will completely break down. However, there is the physical 
effect of diffusion parallel to the plate; this transmits the effect of the leading 
edge to P instantaneously. From (4.10) we can see that, for times less than 
(1 +x)/U, the error involved in ignoring the existence of the leading edge is 
exponentially small as 

exp { - (-!A2) 
4vt ’ 

which it is reasonable to neglect. 

The author wishes to thank the National Research Council of Canada for an 
operating grant during the time this work was completed. 
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The solitary wave in water of variable depth 
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Equations are derived for two-dimensional long waves of small, but finite, 
amplitude in water of variable depth, analogous to those derived by Boussinesq 
for water of constant depth. When the depth is slowly varying compared to the 
length of the wave, an asymptotic solution of these equations is obtained which 
describes a slowly varying solitary wave; also differential equations for the slow 
variations of the parameters describing the solitary wave are derived, and solved 
in the case when the solitary wave evolves from a region of uniform depth. For 
small amplitudes it is found that the wave amplitude varies inversely as the 
depth. 

1. Introduction 
The behaviour of surface gravity waves on a beach has been a subject of 

considerable theoretical and experimental research. In  the simplest situation 
the flow is two-dimensional and irrotational, and the fluid is inviscid, incom- 
pressible and of constant density. Then, for a train of infinitesimally small 
amplitude oscillatory waves of frequency w and wave-number K ,  the change in 
amplitude a due to a gradual slope may be determined by the assumption that 
the rate of energy propagation remains constant (Rayleigh 191 1). Thus 

cga2 = constant, 

do 
c = -  o2 = gK tanh Kh 

where cg is the group velocity, 

d K ’  

is the dispersion relation, and h is the undisturbed depth. Since w remains con- 
stant, the elimination of K between (1.1) and (1.2) determines a as a function of h. 
For infinitely long waves, ~h +- 0, and this procedure leads to Green’s law (Green 
1837) 

These results may also be derived by constructing an asymptotic expansion 
based on the assumption that if reflexion processes are ignored and the variation 
of h with the horizontal co-ordinate x is very small over a typical wavelength 
then the wave form is locally sinusoidal (Keller 1958). In addition conservation 
of mass requires the set up of a mean reverse flow and conservation of momentum 
requires a decrease in the mean depth as h decreases, both O(a2)  (Longuet- 
Higgins & Stewart 1964). 

For infinitely long waves of finite amplitude, the governing equations are 

ah4 = constant. (1.3) 



640 R. Grimhaw 

analogous to those of gas dynamics, and it is well known that no permanent 
progressing wave form is possible. However, it  may be shown that a discon- 
tinuity in wave slope for a wave of elevation will cause the wave to break (i.e. 
the wave slope becomes infinite) before the shoreline is reached (Greenspan 1958). 
On the other hand if a bore reaches the shoreline in finite time, it does so with a 
finite speed and zero amplitude (Keller, Levine & Whitham 1960). 

In  this paper we shall consider the modulations formed on the Boussinesq 
solitary wave by a slow variation in the depth. This solitary wave is a permanent 
progressing wave form consisting of a simple elevation above the undisturbed 
surface whose amplitude a and length A (usually defined as the width when the 
free surface is one-tenth of its maximum height) are such that a/h and h2/h2 are 
comparable small quantities. It was first observed by Russell (1837), and estab- 
lished theoretically, to the lowest order in alh, by Boussinesq (1871, 1872). Ippen 
& Kulin (1955) have performed experiments in which a solitary wave is incident 
on a beach of constant slope. They found that the amplitude increased with 
decreasing depth approximately according to the law h? where k depends on the 
beach slope and decreased as the slope was increased (e.g. k = 0.47 for a beach 
slope of 0.023). In addition the wave crest became more pronounced, and there 
was increasing asymmetry due to steepening on the front face, as the wave 
climbed the beach; eventually wave breaking was observed, either due to 
‘peaking’ at  the wave crest and subsequent spilling, or due to an infinite slope 
on the front face and subsequent plunging. 

To discuss the behaviour of a solitary wave on a beach, we first derive, in 
$2, equations analogous to those used by Boussinesq for the case of constant 
undisturbed depth. In  $ 3  we derive various properties of the solitary wave. 
In $ 4  we consider the case when the still water depth h is a slowly varying func- 
tion of the horizontal co-ordinate x and so varies little over a distance comparable 
with A, the length of the wave. An asymptotic expansion is introduced, analogous 
to those used by Whitham (1965a, b )  to discuss modulations on cnoidal waves 
on a constant depth, and in other situations also (we note that the solitary wave 
may be regarded as a limiting case of a cnoidal wave as the wave period becomes 
infinite). Then transport equations for the amplitude and for the other parameters 
determining the solitary wave are derived, either by imposing conditions which 
ensure that the asymptotic expansion is uniformly valid in x, or by using con- 
servation laws. In  $ 5  these transport equations are solved; the principal con- 
clusion is that when the wave develops from a region where h is constant then the 
variation of the amplitude em is determined by conservation of the energy in the 
wave and this causes em, for small e,/h, to vary as h-l. Finally, in 5 6 the relation- 
ship of the asymptotic expansion to a certain exact solution of the governing 
equations is considered. 

2. Equations of motion 
It will be assumed that the flow is two-dimensional and irrotational, and that 

the fluid is inviscid, incompressible and of constant density. We shall be con- 
cerned with long waves so that if h is a horizontal length scale for the waves, and 
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h, is a length scale for the undisturbed depth, then the parameter e = hi/h2 is 
small compared to one. Since it can be anticipated that for long waves the 
Froude number will be close to  critical we choose (gh,)B as a typical velocity 
scale. Then introducing dimensionless co-ordinates based on A,  h,, (gh,)B we find 
that the equations of motion for the velocity potential $(x, y ,  t )  are 

q5,x+$yv = 0 for - h  y 7, (2.1) 

ehx+,+$, = 0 for y = -h ,  (2.2) 

4rt+ r z $ x )  - 4, = 0 for Y = 7, (2.3) 

e(y + q5t + 44;) + +$$ = 0 for y = 7, (2.4) 

where y = ~ ( x ,  t )  is the free sudace, and y = - h(z) is the undisturbed depth, 
(q.v. figure 1) .  Equations (2.2), (2.3) are kinematic boundary conditions and 
(2.4) is the condition that the pressure be constant on the free surface. 

Y = tl(.Y, f) 

FIGURE 1. Co-ordinate system. 

For smalleweseekasolutionof (2.1) and (2.2)intheform$ = a($,+~q5~+ ...), 
where a is a measure of the wave amplitude. We find that, to  O(E),  $ may be 
expressed in terms of a new unknown function F(x,  t )  as follows 

$ = a(p+e( -y(hpz)x-&/2px,) +O(E’)). (2.5) 

Substitution into (2.3) and (2.4) then gives a pair of coupled equations for 7 
and F ,  both functions of x and t only. However, these will be further simplified 
as i t  is well known that the Boussinesq solitary wave may be characterized by 
requiring a and e to be comparable small quantities (Ursell 1953). Thus we put 

(2.6) 7 = a(E + O(e2)), 

where E(z,  t )  is another unknown function, substitute into (2.3) and (2.4) and 
retain all terms up to  O ( 8 )  or O(ae2), etc. This procedure leads to the Boussinesq 
equations E+&+&cF~ = 0, (2.7) 

(2.8) E,+ (hF,),+a(Ep,),+ s(~h3-E”,,),+~(gh2h,,p,), = 0. 
41 F L M  42 
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These equations are analogous to those used by Boussinesq (1  872) when h is 
constant, and equivalent versions have been given by Mei & Le MBhautc5 (1966), 
and Peregrine (1967). When the terms of O ( E )  are omitted they reduce to the 
non-linear shallow water equations, and when the terms of O ( a )  are also omitted 
they reduce to the linearized shallow water equations. Thus they contain the 
first-order effects of non-linearity, represented by a, and of frequency dispersion 
represented by E .  

It will be useful in the sequel to  identify (2.7) and (2.8) as the Euler equations 
of a certain Lagrangian. Indeed, Whitham (1967) has shown that the Boussinesq 
equations for constant h may be derived by suitably approximating a certain 
Lagraiigian for the system (2.1) t o  (2.4)) and we shall follow a similar procedure 
here. Luke (1966b) has shown that the system (2.1) and (2.4) can be derived 
from the variational principle 

where the infinitesimal variations S$, Sr are sufficiently differentiable and vanish 
as x,t approach the boundary of the region of integration. If the expansions 
(2.5) and (2 .6)  are now substituted into (2.9) the integrand, to O(e3) with the 
omission of certain divergence terms which do not contribute to the Euler 
equations, is a”-L where 

L ( E ,  F,, F,,, F,;  X )  = EF, + kE2 + +(h + aE)  F i  - e6h3 F:, + E$h2h,, F:, (2.10) 

and L may now be identified as an appropriate Lagrangian for (2.7) and (2.8).  
Indeed the variation of L with respect to E gives (2.7),  and the variation with 

(2.1 1 )  

which is jus t  (2.8). The form of (2.11) will be useful in the sequel as i t  is in con- 
servation form, and corresponds to  the explicit absence of F in L. It represents 
for small E ,  conservation of mass. Another conservation law may be found from 
the explicit absence of t  in L, and is 

*) = O .  (2.12) 
Ft aF,, 

This equation represents conservation of energy, and - {&(aL/aF,) - L} may 
be regarded as an energy density, although it  differs from the exact energy 
density, even for small E ,  by the previous omission of divergence terms from L. 
Nevertheless, it may be shown that certain average energy densities can be 
computed from F,(aL/aFt) - L. An equation, which corresponds to  (2.11) and 
(2.12), but represents momentum, is 

( Fx &) + (Fx&- L + 2Fx, W Z X  ~ a L )  - - :z2(Fzg)+g=0, (2.13) 

where the last term is the explicit derivative of L with respect to x through the 
dependence of L on h. This is not a true conservation law as it contains the 
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inhomogeneous term aL/ax which represents the horizontal pressure thrust due 
to the bottom slope. A further conservation law is 

2 a 
at ax - (F,) + ( -4) = 0. (2.14) 

Now that the ordering parameters a, e have served their purpose, we shall, 
in the following sections, revert to dimensionless co-ordinates based on a length 
scale h, and a velocity scale (gh,)*. Thus we shall use (2.7), (2.8) and the sub- 
sequent equations, but with a = e = 1, so that e.g. y = E is the equation of the 
free surface to the approximation considered. We shall also, without any 
ambiguity, call F the velocity potential and 

U = F, (2.15) 
the velocity. 

3. The solitary wave 
In  this section it will be assumed that h is constant. We shall seek a solution 

of the Boussinesq equations (2.7) and (2.8) for which E and U are functions 
only of the phase 

(3.1) 

where K (wave-number) and c (wave speed) are constants. Thus we seek a solution 

(3.2) 
of the form E = B + e(8), 

u = A +21.(8), (3.3) 

8 = K(X - ct) ,  

where A ,  B are constants, representing the mean velocity and mean height 
respectively and defined so that e, u and all their derivatives vanish as 101 + co 
(we are anticipating from the form of (2.7) and (2.8) that any such solution will 
be even in 8). The corresponding form for the potential, F ,  which must satisfy 
U = F, and be consistent with (2.7) is 

P = Ax- Ct+f(O), (3.4) 

where f(8) = so K - l  U ( 8 ' )  do' 
0 

and C is a constant, related to the Bernoulli constant. 

behaviour as 181 + co implies that 
Substitution of (3.2) and (3.4) into (2.7), and application of the limiting 

(3 .5 )  

(3.6) 

e7c"u-I 2 221. 3 

c = B + gA2, 

where c* is defined below (3.7). Then substitution of (3.2) and (3.3) into (2.8), 
elimination of e by (3.5), and two integrations with respect to 0, imply that 

p K 2 U ;  = w(u)  (c*Z - h") u2 - C*U3 + $21.4, (3.7) 

where C* = C - A ,  h* = h + B .  
41-2 
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This has the solution 
urn sech2p6 

1 - d tanh2p6 ’ u =  

where U, = 2 ( ~ * -  Jh*), (3.9) 

c* - Jh* a=---- 
c*+ Jh*’ 

(3.10) 

~p = J$(c*2 - &,*)A h-%, (3.11) 

and we have selected the origin of B to be the wave crest, where both e and u 
achieve their maximum values em and urn respectively. Indeed we find that 

em = , / (ha )  urn. (3.12) 

Thus the solitary wave profile, the wave amplitude em and the ‘wavelength’ ( ~ p ) - l  
are determined completely by the constants A,  B and c; the constant K plays 
the subsidiary role of relating the x scale to the 0 scale. For small values of em 
(h  and h* being O(l) ) ,  d is O(em) and may be neglected, and then (3.8) reduces 
to the solitary wave profile found by Boussinesq (1871); also the wave speed 
formula (3.9) is then equivalent to the more commonly quoted formula 

rn, - c*2 = h* + e 

Although our derivation of the Boussinesq equations was such that, for con- 
sistency, all formulae such as (3.8) should be reduced to their lowest order in 
em, we shall continue to work with the ‘exact’ formulae above (‘exact’ in the 
sense that they are exact solutions of the Boussinesq equations (2.7) and (2.8)); 
indeed it causes no extra algebraic inconvenience to ignore the smallness of em, 
and the retention of the higher order terms in em may give some indication of 
the effects of increasing non-linearity. It may be shown that the profile given 
by (3.8) is a close approximation to the Boussinesq profile (e.g. the maximum 
difference is approximately 2 % for emh-l= 0.1, and approximately 74 % for 
emh-l= 0-4) and the latter was shown by Daily & Stephan (1952) to be in good 
agreement with experimentally observed profiles for values of e,h-l as large as 
0.6 (for the larger values of emh-l the experimentally observed profile is thinner 
near the crest than the Boussinesq profile); similarly the observations of Daily & 
Stephan show that the wave speed given by (3.9) is approximately 6 yo too high 
for emh-l= 0.6, with a decreasing error for decreasing e,h-l. 

We shall conclude this section with the calculation of various quantities of 
interest associated with the solitary wave. First, we give the following definitions. 
If P(6) is the relevant quantity, then its mean is 

P = lim P ( o ) ;  
Inl-.m 

the reduced (or wave) quantity is 

(3.13) 

p(6)  = P(6) - P ;  (3.14) 

and its wave average (or mean) is 

(3.15) 
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is the wave average with respect to the x scale. Clearly P is a function so that 
of A ,  B and K - ~ @  is a function of A ,  B and c. Thus we find that 

6 = ,/%cKh$(c*z - h*)t, 

& = 4yKhg c0sh-l (c*/,/h*); 

(3.16) 

(3.17) 

also the mean Lagrangian, and the wave average Lagrangian are 

L = -BC+gB2+ij(h+B)A2, (3.18) 

i = &(h*A-cB)-G, (3.19) 

where 0 is the wave average of the polynomial w(u) defined in (3.7)) andisgivenby 

= K W ,  (3.20) 

(3.21) where 

It may be noted that 8 is the wave average of the mass density (apart from the 
constant proportionality factor ph,, where p is the density of the fluid), so that 
K-l6 is the mass carried forward by the wave. Also the wave average of the 
momentum density (apart from the factor ph,J(gh,)) is 

h*& + A& + atqac. 

Finally, the wave average of the energy density (apart from the factor pgh;) is 

W = W ( A ,  B;  C, h)  = ,/$h% ,/(w(u)) du. 
IOU"' 

(3.22) 

(3.23) 

and further c(adj/ac) -3 = (%)2 Kh*(c*2- h*)t+A(ad/&). (3.24) 

4. Modulations caused by slowly varying depth 
It will now be supposed that h is a function of x but is slowly varying in the 

sense that h varies little over a distance comparable with the length of the wave. 
Thus we shall assume that h = h(X)  where 

X = Px, T = Pt, (4.1) 

and pis a small parameter such that p < ~ p .  In  this section we shall find equations 
which govern the modulations to the solitary wave of $ 3  caused by this slow 
variation of the depth. This will be achieved by finding an asymptotic solution 
of the Boussinesq equations which represents a slowly varying solitary wave 
i.e. locally this asymptotic solution may be represented by the uniform solution 
of $3, but the parameters A ,  B, C ,  c and K which determine that solution are 
now slowly varying and so functions of X, T. Our principal aim is the determina- 
tion of transport equations for these parameters. Whitham (1965a, b )  has con- 
sidered problems of this type for periodic slowly varying wave trains governed 
by non-linear, dispersive equations. The procedures described in this section are 
closely related to the procedures developed by Whitham and other workers in 
this field. 
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Thus we are motivated to seek an asymptotic solution of the Boussinesq 
equations (2.7) and (2.8) of the form 

(4.2) I E = B ( X ,  T )  +e(B;  X ,  T) +PEl(6; X ,  T) + O(P2) ,  

u = A ( X , T ) + ~ ; X ,  T ) + P ~ , ( ~ ; x , T ) + o ( ~ ) .  

A,  B are determined so that e, u and all their derivatives with respect to 8 vanish 
as 181 -+ co, and the phase 8 is such that 

8, = K ,  et = - K c ,  (4.3) 

and so 8 = P-lO(X, T ) ,  where K = Ox, - KC = 0,. (4.4) 

B is a fast variable, which has yet to be determined, and X, T are slow variables; 
(4.2) is a two-scale asymptotic expansion of a type familiar in the context of 
ordinary differential equations. Since derivatives with respect to 8 are O( l), while 
derivatives with respect to X and T are O(P), it is clear that when (4.2) is sub- 
stituted into (2.7) and (2.8), the terms of O(1) are just those which describe the 
solitary wave of $ 3  and so e, ZG are determined as functions of8 by (3.5) to (3.11)7 
except that the parameters A ,  B, C, c and K are now functions of X ,  T .  The 
transport equations which determine these parameters are found by applying 
the principle that the asymptotic expansion (4.2) is to be uniformly valid i.e. 
PE, and PU, are O(P) with respect to B + e and A + u respectively for all 8. Thus 
we shall assume that El and U, can be constructed so that 

exist, and all derivatives of U, and El with respect to 8 vanish as 181 + co. It will 
be shown in subsection (a) below that such a construction is indeed possible. 
From (4.5) we define 

A ,  = + ( A t  +A,) ,  [U,] = ( A t  - A T ) ,  U ,  = U,-A,, (4.6) 

with similar definitions for B,, [El] and el. 

where U is given by (4.2). Thus 
Next we seek an asymptotic expansion for the potential F such that U = F, 

where the remaining terms are O(Pz) if they involve ~9 and O(P) otherwise, and 

f = J K-, ~ ( 8 ' ;  X ,  T) d6', 

@lX = A,, $IT = -% (4.10) 

KflS = u1 -fx* (4.11) 
It follows that 

Ft = - C - CU+P( -C,- CU,+ fT + cfx) + O(p2). (4.12) 

Then substitution of (4.2) and (4.12) into (2.7) gives, for the terms of O ( l ) ,  (3.5) 
and (3.6)) while the term of O(p)  is 

B, + el - C, - cu, +fT + cfs + ( A  + u) ( A ,  + ul) = 0. (4.13) 
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Letting 8 --f 5 co we find that 

c; = B,+ AA,, (4.14) 

(4.15) [El] = C*[u1] - (K-’&?)r - C(K-”&),. 

Next, substitution of (4.2) and (4.12) into the consistency relation (2.14) yields, 

forthetermofo(P)’ A T + C X + { K T + ( K C ) ~ } U  = 0; (4.16) 

and letting 119 I -+ co we have 
A,+C, = 0, 

whence KT + ( K C ) x  = 0. 

(4.17) 

(4.18) 

These two equations are just the consistency relation for @ and 8 respectively 
and provide two transport equations. A third is (3.6); two more are needed and 
may now be determined in each of three ways. 

(a) Direct method 

In  this subsection the transport equations will be found by first finding U, (and 
hence E l )  explicitly. The methods used here are similar to those used for slowly 
varying periodic wave trains by Luke (1966a) for a Klein-Gordan equation, 
and Hoogstraten (1968) for the Korteweg-de Vries equation, and for the 
Boussinesq equations of constant depth, and are analogous to the Poinear6 
technique for ordinary differential equations (e.g. in particular to the work of 
Kuzmak 1959). 

If (4.2) is substituted into (2.8)’ then the term of 0(1) defines the solitary wave 
of $3, while the term of O(p)  gives 

K{ - cE1+ (h* + e )  U1+ (h  +El)  ( A  + U )  + $ ~ ~ h ~  U-i,, + h3~,ug + h3~u,x  + 2h2hx K U ~ > B  

+(B+e},+((h*+e)(A+u)}, = 0. (4.19) 
Letting 101 + co we see that 

B, + (h*A)x = 0, (4.20) 

which is the fourth transport equation. Then (4.19) is integrated with respect to 8, 
and after elimination of e and el by (3.5) and (4.13) respectively, we find that 

Qh3~2~1es - ( c * ~  - h*) u1+ ~ C * U U ~  - Qu’u~ = G, (4.21) 

G = D, - K - ~  {e, + (h*u), + (Ae), + (eu),}dO’ so” where 

- h 3 ~ ,  U, - h3~u,X - 2h2hx KUe 

- (c* - U )  (f, + cfLy) - uB1- 2uc*A1 + $u2A1, (4.22) 

where D,(X, T )  is a ‘constant ’ of integration. It may now be observed, by dif- 
ferentiating (3.7) twice with respect to 8, that the homogenous part of (4.21) 
(i.e. when G is replaced by zero) has the solution U, = u g .  Thus (4.21) may be 
integrated again with respect to 8 after first multiplying by u g ,  and we find that 

(4.23) 
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where D,(X ,T)  is another ‘constant’ of integration. Letting 8- t  f c o  we see 
that the left-hand side then vanishes, and so therefore must the right-hand side. 
Thus D, = 0 and 

ueGd0 = 0. (4.24) 

Since u is an even function of 8, (4.24) involves only A ,  B, c and K and is the 
fifth transport equation. The complete set of transport equations is thus (3.6), 
(4.17), (4.18), (4.20) and (4.24). One further integration of (4.23) yields 

rrn 

where 
e 

H =I u,Gd0’, 
--m 

(4.25) 

and D,(X, T )  is another ‘constant’ of integration. It may now be shown that 
Hu-1 remains finite as 0 -+ 5 00 (in spite of the fact that e.g. ux contains terms 
of the type &,), and so u, remains bounded as 8 -+ & 00, and all its derivatives 
vanish as 0 -+ co. Of course, u1 is determined by (4.25) as a function of 8 
only, and still depends on the ‘unknown’ constants A ,  B,, D,  and D3; these 
may presumably be determined in a, similar way to the above by continuing 
the asymptotic expansion (4.2) t o  a higher order in p. 

( b )  Averaged conservation laws 

In this subsection the transport equations will be derived by applying suitable 
averaging procedures to the conservation laws (2.11), (2.12), (2.13) and (2.14). 
These procedures are analogous to those used by Whitham ( 1 9 6 5 ~ )  for slowly 
varying periodic wave trains, and are related to the Krylov-Boguliobov technique 
familiar in the context of ordinary differential equations. 

The typical conservation law has the form 

a q a t  + a q a x  + p ~  = 0, (4.26) 

where R is proportional to h, and its presence is due to the inhomogeneity of 
the medium. Since E,  U have asymptotic expansions of the form (4.2), it follows 
that P, Q, R have similar expansions e.g. 

P = Po(@; x, T) +PP,(O; x, T) + O(P2). (4.27) 

Then our hypotheses on E ,  U are such that 

P; = lim P, (i = O , 1 )  
B+*m 

certainly exist, and we define 

(4.28) 

- 

P, = +(P,+ + Pi), [Pi] = (PZ -Pi) (i = 0 , l ) .  (4.29) 

Since Po, etc., are even in 8, [Po], etc., vanish but as we shall see, [P,], etc., in 
general are not zero. Also we observe that 

(4.30) 
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Next we define the reduced (or wave) quantity by 
- 

1, = Po- Po (4.31) 

and its wave average (or mean) by 

$ =  lim pd0,  Sr , (4.32) 

We now substitute the expansions such as (4.27) into (4.26) and equate to zero 
the term of O ( l ) ,  and the term with coefficient 1; the former gives a relation 
satisfied identically by the solitary wave of 8 3, and the latter gives 

POT + &,, +Ro + p T  + qs + r - KcPlo + K & ~ ~  = 0. (1.33) 

First we take the mean of (4.33), i.e. the averaging procedure defined by (4.30). 

(4.34) 
This yields the equation POT + QOAY +R, = 0. 

Next we substract (4.34) from (4.33), and take the wave average, i.e. the averaging 
procedure defined by (4.32). This yields the equation 

(@IT + (4)s + @ - KC[PII + K[&11 = 0. (4.35) 

Equations (4.34) and (4.35) are transport equations for A ,  B, C ,  c and K, and 
also for [El] and [U,]. 

It is convenient when applying the averaged conservation laws (4.34) and 
(4.35) to do so in conjunction with the formulae (3.5), (3.6) and (4.15), all of 
which are derived from (2.7) (which is not in conservation form). If (4.34) is 
applied to (2.14) and (2.11), then we obtain (4.17) and (4.20) respectively; further 
applications to (2.12) and (2.13) yield two transport equations for A ,  B, G which 
are equivalent to (4.17) and (4.20). Application of (4.35) to (2.14) yields the 
transport equation (4.18); application of (4.35) to (2.11) yields 

(6)yT + h*û  +At?+ + K (  - c*[EJ + h*[U,]) = 0, (4.36) 

where 8 is defined by (3.20), (3.21). [El] and [U,] may now be found in terms of 
A ,  B, C ,  c and K by solving (4.15) and (4.36) simultaneously. Next application 
of (4.35) to (2.12) and subsequent elimination of [El] and [U,] yields 

( 

(c$-8),.. ( c  ( c g + 8 ) ) , - $  = 0 ;  (4.37) 

similarly application of (4.35) to (2.13) and subsequent elimination of [El] and 
[U,] yields (g)*+(cg) -a a8 = 0, 

X 
(4.38) 

which is easily seen to be equivalent to (4.37). In  both of these equations 
8 = KW(C;  X, T )  so that e.g. a8/aT means differentiation with respect to T while 
c and K are kept constant; 8 depends on X, T through its dependence on A ,  B 
and h. Finally, it may be shown that (4.24) can be reduced to either of (4.37) 
or (4.38). 
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( c )  Averaged variational principle 
Whitham (1965a, 1967) (see also Bretherton 1968) has developed an heuristic 
procedure for finding the transport equations for slowly varying periodic wave 
trains, when the governing equations are the variational equations of a Lag- 
rangian density. Briefly this procedure consists of calculating the average value 
over one period of this Lagrangian density for the uniform wave train, which 
itself depends on a set of parameters such as frequency, wave-number, etc.; 
this averaged Lagrangian is then subjected to the variation of these parameters. 

The Boussinesq equations (2.7) and (2.8) for constant h possess a solution of 
the form (3.2), (3.3) and (3.4) which has a period y, where now u has zero mean 
so that A = - /  1 y  Ud8,  

2Y -y  
(4.39) 

with a. similar equation for B, and 

$ h 3 ~ 2 ~ i  = K , + K , u + ( B + ~ A ~ - C ) U ~ + W ( U )  v(u); (4.40) 

w(u) is defined by (3.7), and K,, K ,  are constants of integration. If the poly- 
nomial v (u )  has the four real zeros d-lu, > urn > u1 > u2, we select that solution 
of (4.40) for which u lies between u1 and u,. Then if K,, K ,  -+ 0 simultaneously, 
so that the period y -+ co, the solution of (4.40) becomes the solitary wave 
(3.8). The averaged Lagrangian is defined to be 

Y -.=L/ m e  (4.41) 

2 = Z ( A ,  C; B) + $K,- Y - ~ & K ~ %  1””” %Mu)) du, (4.42) 

where L is defined by (3.18). 9 is thus a function of the parameters A ,  B ,  C; 
K,, K,, w ( =  KC the frequency) and K. For a slowly varying wave train these 
parameters are functions of X ,  T, and Whitham’s procedure is to  subject 9 to 
variations of @ (where @x = A ,  @T = - C), 0 (where 0, = K ,  0, = - w ) ,  B ,  K,  
and K,. Thus the transport equations are 

2Y - y  
and is given by 

u u1 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

Equation (4.46) is the dispersion relation which determines y as a function of 
the parameters, and (4.47) is the condition that u have zero mean. Two more 
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transport equations are obtained by applying the consistency relations (4.17) 
and (4.18). Altogether there are seven transport equations for the seven para- 
meters. Now we can let K,, K ,  + 0, so that y -+ 00 and 9 -+ E ;  (4.43) and (4.45) 
become 

which are just (4.20) and (3.6) respectively. Equation (4.44) becomes 

(E?)T-(g) = o ,  
x 

(4.48) 

(4.49) 

where 63 is regarded as a function of w ,  K and X, T; if instead 63 is regarded as a 
function of c, K and X ,  T then (4.49) is just (4.37), or (4.38). Equations (4.46) and 
(4.47) do not retain any significance as y + co. The form of (4.48) and (4.49) shows 
that our transport equations can be derived from two variational principles; 
first by subjecting L, a function of A ,  B, C, to variations of $ and B; and secondly 
by subjecting 63, a function of w( = KC) ,  K and X, T (through A ,  Band h) ,  to varia- 
tions of 0. 

5. Solution of the transport equations 

displayed here again for convenience : 
The transport equations are (3.6), (4.17), (4.20), (4.18) and (4.37), and are 

The first three equations involve only A ,  B and C ;  they are, perhaps not un- 
expectedly, just the shallow-water equations (i.e. (2.7) and (2.8) with the dis- 
persive terms absent), and oan, in principle, be solved. In  particular if A and B 
vanish at  T = 0 for all X, then they vanish for all T.  In any event, A and B 
can be regarded as known when considering (5.4) and (5.5). Since 63 = KW, and 
W is a function only of c and X ,  T (through A, B and h),  it is convenient to 
eliminate K from (5 .5 ) :  

This is a single equation for c, or better, for 

aw 
ac 

v = c - - W  (5.7) 

and its general solution can, in principle, be obtained. 
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We shall now consider a special case when (5.6) may be integrated explicitly. 
It will be supposed that h = 1 for all X < 0, and so the wave evolves from a 
region where it is uniform. Thus the transport equations are to be solved subject 
to the initial values, A = B = 0 and K, c constant. (This cannot be exactly true as 
the solitary wave is infinite in extent, and even when its crest is over a large 
negative value of X, part of the wave is interacting with the varying h in X > 0; 
however, it  is reasonable to suppose that this interaction can be made as small 
as we please by taking the initial values to be those at  an indefinitely large 
negative value of X.) Thus A = B = 0,  and since W then depends only on c and h, 
aW/aT = 0 and (5 .6 )  becomes 

where from (5.7) c = c( V ,  X ) .  The general solution of (5 .8 )  is 

VT++& = 0 (5.8) 

= "To), 

where To = 7'-~~s/o(lM(T*),s)~-'. (5.9) 

V is therefore an 'adiabatic invariant', i.e. it is constant on the wavelet which 
passed X = 0 at a time T,, and is travelling with speed c(M(T,,) ,X).  In general 
(5.9) contains the possibility of shock formation at  those places where T,, cannot 
be found as a function of X, T. However, since K, c are initially constant, so is 
V and the solution of (5.8) required is just V equals a constant (i.e. M is a con- 
stant). We note that since A and B are zero, it follows from (3 .23)  that V is the 
wave-average of the energy density with respect to the x scale, and so the solution 
we have obtained is just that which preserves the energy of the wave. This of 
course, might have been expected, as our asymptotic expansion is one which 
ignores reflexions and there is no other outlet for the loss of energy. Further, 
it follows from (3.24) that 

c2 = h+Nh- l ,  (5.10) 

where N is a constant (in general N is a function of To). The wave amplitude is 
found from (3.9) and (3 .12))  and is 

e ,  = 2 ( ( h 2 + N ) 2 - h ) .  (5.11) 

Figure 2 shows a plot of ern/(ern),, against h where (ern),, is the value of em at h = 1 
(i.e. X = 0); it exhibits the fact that ern/(ern),, for each N ,  increases as h decreases, 
but, for each h, decreases as N (and hence (em)o) increases. Also shown is the 
graph of h447 which represents the results of Ippen & Kulin's (1955) experiments 
on the behaviour of a solitary wave on a beach of constant slope 0.023; they 
observed a fairly wide scatter, and the curve shown is a best fit for several 
observations with values of (em),, ranging from 0.2 to 0.7 (and also with varying 
values for the initial depth of fluid). They also observed a small decrease in 
amplitude at the foot of the beach, where, in the experimental set up, there was 
an abrupt change in beach slope from zero to 0.023; this was presumably due to 
a reflexion. We have ignored this initial energy loss in displaying their results 
on figure 2 by allowing the graph of the experimental points (viz. h-0") to pass 
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through h = 1 when em = (eJ0  whereas the true curve would be similar in shape 
but displaced downwards by a small amount. For small values of (e,J0 we have 

em/(em)o h-l, (5.12) 

an approximation which is accurate to within 5 % for (em),, = 0.01, 0.3 6 h d 1 
and also for (e,,J0 = 0.1, 0.6 < h d 1 but becomes increasingly inaccurate for 
larger values of (em)o. 

Jr 

3 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 . 0.7 0.8 0.9 1.0 
h 

FIGURE 2. Graph of (e,n)/(em)o against h. 

Other properties of the wave can also be determined from (5.10). Thus we - -  

find that 
(5.13) 

(5.14) 

K-% = .J(j$) hg cosh-l(l+ Nh-2)&, (5.16) 

"El] = $h4h, (h2+N)f(~- l&)+ J ( T )  Nh,, (5.16) 

N [  V,] = $hAy (h + Nh-l) ( K-%). (5.17) 

Equation (5.13) shows that the length of the wave, ( ~ p ) - l  decreases as h de- 
creases; (5.14) to (5.17) show that themasscontainedinthewaveisnot conserved, 
and is fed into a mean flow, and a change in the mean depth, both proportional 
to Ph,. Further the equations (5.16) and (5.17) indicate that the effect of the 
terms of O(p)  in the asymptotic expansion (4.2) is to cause increasing asymmetry 

16N 
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due to steepening on the front face, and flattening on the rear face. If we adopt 
the criterion that the wave will break when u, = c (i.e. the velocity at  the crest 
equals the wave velocity) then (5.10) implies that the wave will break when 
h = J ( + N ) ;  a t  this value of h, e,h-l= 2 which is much greater than the most 
commonly accepted theoretical value of 0.78 for the highest wave on a constant 
depth (McCowan l894), although Ippen & Kulin's experiments showed that 
e,h-l M 1.2 at the breaking depth for a beach slope of 0.023. Of course the value 
u, = c is almost certainly outside the range of validity of the Boussinesq equa- 
tions. Finally, from (5.4) we see that KC is constant, and this determines K.  

6. Error estimate 
The procedures outlined in $4 have enabled us to construct functions 

,!?I = B+e+PE, ,  9 = P-'ll.+f+$l+Pfl, 0 = pz, (6.1) 

which satisfy the Boussinesq equations (2.7) and (2.8) approximately, with an 
error of 0(P2).  That is if 

D,(E, F )  = aLlaE, (6.2) 

where L(E,  F,, F,,, 4; X )  is defined by (2.10) (with a! = e = 1) then 

D l ( E , P )  = O(PZ), D2(,!?I,P) = O(P2). (6.4) 

We now pose the problem: does there exist an exact solution E ,  F ,  U = Fz of the 
Boussinesq equations for which8 - E and 0 - U are 0(P2) 1 The following analysis 
provides a partial answer to this problem. 

For simplicity, it  will be supposed that h = 1 for X d 0 and h takes another 
constant value for X large and positive and that h is as smooth as desired. Then 
we may assume that B and @ vanish for all 5 and t ,  and that, from (5.16) and 
(5.17), [El] and [U,] vanish for sufficiently large 1x1. Also we can assume that 
B, and @1 vanish for all x and t as their values were not relevant in the construc- 
tion of El  andf,. Thus the functions defined by (6.1) have been constructed so 
that 8, with all their derivatives, vanish as 1x1 -+ 00, for some time interval 
0 Q t Q to. Let E,  P be that exact solution of the Boussinesq equations which 
agrees with i?, P at t = 0, so that 

E-E\t=, = 0,  P-PIt=, = 0. (6 .5)  

We shall now assume that for the initial values (6.5) there exists an exact solution 
of the Boussinesq equations over the time interval 0 Q t Q to, such that E, U with 
all their derivatives, vanish as 1x1 -+ 00. Given this, we shall now show that 8, Z7 
differ from E ,  U by terms of 0(p2).  Let 

E' = E - 8 ,  F' = F - p ,  U' = F 2 - p .  x, (6.6) 

then D,(E', F ' )  = - U'O + 0(p2), (6.7) 
D2(E', F ' )  = - (E'U + U'E),+ O(Pz)), (6.8) 
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where the terms O(p2) are uniform for all x, and 0 < t < to. Now if 
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then D,(E, P) = - E,DD,(E, P) +F,D,(E, P). (6.10) 

It was remarked in $ 2  that D, = 0 is the equation for conservation of energy, 
and that 

&(E,P) E L-Ft-BLIBF, &E2+&(h+E)  U 2 - & h 3 U ~ + ~ h 2 h x x U 2  (6.11) 

may be regarded as an energy density; although it is not positive definite, it 
may be assumed that it takes only positive values in the long wave approxima- 
tion being used here (e.g. IhUxl 4 I Ul) ,  and that its vanishing implies that E and 
U vanish. Then, using (6.7), (6.8) and (6.10), it follows that 

D,(E’, P‘) = I + O(pz), (6.12) 

where I = (E’+&U‘2) (E’U+ U ’ 8 ) x -  U’U(hU‘+E’U’+(gh3U~)x)x. (6.13) 

On integrating (6.12) with respect to x, we find that 

yrn at --m &(E’,P’)dx = s _ ~ - m I d x + o ( p ~ ) .  (6.14) 

Clearly, using integration by parts where necessary and the long wave approxima- 
tion, the integral of I can be estimated in terms of the integral of 8, so that 

(6.15) 

where K ,  Q are constants. Since b(E’, P’) vanishes when t = 0 it follows that 

from which we may deduce that 

E - B  = 0(p2),  U -  U = 0(p2).  (6.17) 

Since 8, 9 contain no reflected terms, (6.17) shows that any reflected energy is 
O(p2). Indeed this same argument could be used to show that if b, P were such 
that the error in (6.4) was 0 ( p N )  for arbitrarily large N ,  then the reflected energy 
is also O(pN) .  

This work was completed while the author was visiting the Department of 
Applied Mathematics and Theoretical Physics, University of Cambridge, during 
the tenure of a Royal Society and Nuffield Foundation Commonwealth Bursary. 
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